Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 83 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 17 + 8\cdot 83 + 61\cdot 83^{2} + 80\cdot 83^{3} + 79\cdot 83^{4} +O\left(83^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 31 + 77\cdot 83 + 31\cdot 83^{2} + 45\cdot 83^{3} + 55\cdot 83^{4} +O\left(83^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 44 + 52\cdot 83 + 56\cdot 83^{2} + 80\cdot 83^{3} + 19\cdot 83^{4} +O\left(83^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 75 + 27\cdot 83 + 16\cdot 83^{2} + 42\cdot 83^{3} + 10\cdot 83^{4} +O\left(83^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 4 }$
| Cycle notation |
| $(1,2)(3,4)$ |
| $(2,4)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 4 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$2$ |
| $1$ |
$2$ |
$(1,3)(2,4)$ |
$-2$ |
| $2$ |
$2$ |
$(1,2)(3,4)$ |
$0$ |
| $2$ |
$2$ |
$(1,3)$ |
$0$ |
| $2$ |
$4$ |
$(1,4,3,2)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.