Properties

Label 2.2e2_3_7_19.4t3.12c1
Dimension 2
Group $D_4$
Conductor $ 2^{2} \cdot 3 \cdot 7 \cdot 19 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$1596= 2^{2} \cdot 3 \cdot 7 \cdot 19 $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} + 7 x^{6} - 16 x^{5} + 503 x^{4} - 514 x^{3} + 1477 x^{2} - 2420 x + 1108 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even
Determinant: 1.2e2_3_7_19.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 167 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 3 + 146\cdot 167 + 105\cdot 167^{2} + 32\cdot 167^{3} + 59\cdot 167^{4} +O\left(167^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 14 + 17\cdot 167 + 131\cdot 167^{2} + 25\cdot 167^{3} + 79\cdot 167^{4} +O\left(167^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 21 + 57\cdot 167 + 26\cdot 167^{2} + 120\cdot 167^{3} + 3\cdot 167^{4} +O\left(167^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 27 + 49\cdot 167 + 147\cdot 167^{2} + 156\cdot 167^{3} + 161\cdot 167^{4} +O\left(167^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 33 + 146\cdot 167 + 78\cdot 167^{2} + 26\cdot 167^{3} + 94\cdot 167^{4} +O\left(167^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 68 + 97\cdot 167 + 146\cdot 167^{2} + 148\cdot 167^{3} + 87\cdot 167^{4} +O\left(167^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 76 + 33\cdot 167 + 55\cdot 167^{2} + 32\cdot 167^{3} + 16\cdot 167^{4} +O\left(167^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 94 + 121\cdot 167 + 143\cdot 167^{2} + 124\cdot 167^{3} + 165\cdot 167^{4} +O\left(167^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,4)(2,7)(3,8)(5,6)$
$(1,2)(3,5)(4,6)(7,8)$
$(1,3)(2,5)(4,8)(6,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,3)(2,5)(4,8)(6,7)$$-2$
$2$$2$$(1,2)(3,5)(4,6)(7,8)$$0$
$2$$2$$(1,4)(2,7)(3,8)(5,6)$$0$
$2$$4$$(1,7,3,6)(2,4,5,8)$$0$
The blue line marks the conjugacy class containing complex conjugation.