Properties

Label 2.2e2_3_7_11.6t5.2c2
Dimension 2
Group $S_3\times C_3$
Conductor $ 2^{2} \cdot 3 \cdot 7 \cdot 11 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$S_3\times C_3$
Conductor:$924= 2^{2} \cdot 3 \cdot 7 \cdot 11 $
Artin number field: Splitting field of $f= x^{9} - 4 x^{8} + 18 x^{7} - 45 x^{6} + 99 x^{5} - 145 x^{4} + 147 x^{3} - 96 x^{2} + 25 x - 1 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $S_3\times C_3$
Parity: Odd
Determinant: 1.2e2_3_7_11.6t1.1c2

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$: $ x^{3} + x + 14 $
Roots:
$r_{ 1 }$ $=$ $ 3 a^{2} + 14 a + 2 + \left(12 a^{2} + 11 a + 11\right)\cdot 17 + \left(4 a^{2} + 8\right)\cdot 17^{2} + \left(14 a^{2} + 7 a + 12\right)\cdot 17^{3} + \left(3 a^{2} + 6\right)\cdot 17^{4} + \left(13 a^{2} + 5 a + 4\right)\cdot 17^{5} + \left(2 a^{2} + 4 a + 13\right)\cdot 17^{6} +O\left(17^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 16 a^{2} + a + 12 + \left(8 a^{2} + 1\right)\cdot 17 + \left(6 a^{2} + 5 a + 13\right)\cdot 17^{2} + \left(16 a^{2} + 5 a\right)\cdot 17^{3} + \left(10 a^{2} + 12 a + 1\right)\cdot 17^{4} + \left(5 a^{2} + a + 6\right)\cdot 17^{5} + \left(3 a + 7\right)\cdot 17^{6} +O\left(17^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 4 a^{2} + 14 a + 4 + \left(6 a^{2} + 2 a + 11\right)\cdot 17 + \left(9 a^{2} + 15 a + 3\right)\cdot 17^{2} + \left(15 a^{2} + 5 a\right)\cdot 17^{3} + \left(15 a^{2} + 16 a + 10\right)\cdot 17^{4} + \left(16 a^{2} + 6 a + 13\right)\cdot 17^{5} + \left(15 a^{2} + 12 a\right)\cdot 17^{6} +O\left(17^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 9 a^{2} + 11 a + 6 + \left(9 a^{2} + 15 a + 9\right)\cdot 17 + \left(7 a^{2} + 4 a + 10\right)\cdot 17^{2} + \left(12 a^{2} + 12 a + 5\right)\cdot 17^{3} + \left(9 a^{2} + 2 a + 16\right)\cdot 17^{4} + \left(7 a^{2} + 14 a + 11\right)\cdot 17^{5} + \left(10 a^{2} + 14 a + 12\right)\cdot 17^{6} +O\left(17^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 5 a^{2} + 9 a + 9 + \left(12 a^{2} + 6 a + 5\right)\cdot 17 + \left(4 a^{2} + 11 a + 14\right)\cdot 17^{2} + \left(7 a^{2} + 14 a + 7\right)\cdot 17^{3} + \left(3 a^{2} + 13 a + 6\right)\cdot 17^{4} + \left(13 a^{2} + 14 a + 4\right)\cdot 17^{5} + \left(3 a^{2} + 14 a + 8\right)\cdot 17^{6} +O\left(17^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 8 a^{2} + 9 a + 11 + \left(3 a^{2} + 9 a + 3\right)\cdot 17 + \left(11 a^{2} + 3 a + 10\right)\cdot 17^{2} + \left(11 a^{2} + 11 a + 3\right)\cdot 17^{3} + \left(2 a^{2} + 5 a + 15\right)\cdot 17^{4} + \left(3 a^{2} + 12 a + 9\right)\cdot 17^{5} + \left(9 a^{2} + 11 a + 4\right)\cdot 17^{6} +O\left(17^{ 7 }\right)$
$r_{ 7 }$ $=$ $ 14 a^{2} + 2 a + 5 + \left(a^{2} + 14 a + 8\right)\cdot 17 + \left(a^{2} + 13 a + 9\right)\cdot 17^{2} + \left(2 a^{2} + 5 a + 2\right)\cdot 17^{3} + \left(7 a^{2} + 5 a + 4\right)\cdot 17^{4} + \left(11 a^{2} + 8 a + 4\right)\cdot 17^{5} + \left(a + 13\right)\cdot 17^{6} +O\left(17^{ 7 }\right)$
$r_{ 8 }$ $=$ $ 7 a^{2} + a + 16 + \left(6 a^{2} + 9 a + 16\right)\cdot 17 + \left(16 a^{2} + 14 a + 7\right)\cdot 17^{2} + \left(a^{2} + 3 a + 8\right)\cdot 17^{3} + \left(12 a^{2} + 7 a + 4\right)\cdot 17^{4} + \left(16 a^{2} + 15 a + 13\right)\cdot 17^{5} + \left(5 a^{2} + 16 a + 13\right)\cdot 17^{6} +O\left(17^{ 7 }\right)$
$r_{ 9 }$ $=$ $ 2 a^{2} + 7 a + 7 + \left(7 a^{2} + 15 a\right)\cdot 17 + \left(6 a^{2} + 15 a + 7\right)\cdot 17^{2} + \left(3 a^{2} + a + 9\right)\cdot 17^{3} + \left(2 a^{2} + 4 a + 3\right)\cdot 17^{4} + \left(14 a^{2} + 6 a\right)\cdot 17^{5} + \left(a^{2} + 5 a + 11\right)\cdot 17^{6} +O\left(17^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,3,8)(2,9,4)(5,7,6)$
$(1,6)(3,5)(7,8)$
$(2,6)(4,7)(5,9)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character value
$1$$1$$()$$2$
$3$$2$$(1,6)(3,5)(7,8)$$0$
$1$$3$$(1,3,8)(2,9,4)(5,7,6)$$-2 \zeta_{3} - 2$
$1$$3$$(1,8,3)(2,4,9)(5,6,7)$$2 \zeta_{3}$
$2$$3$$(1,2,6)(3,9,5)(4,7,8)$$-1$
$2$$3$$(1,9,7)(2,5,8)(3,4,6)$$\zeta_{3} + 1$
$2$$3$$(1,7,9)(2,8,5)(3,6,4)$$-\zeta_{3}$
$3$$6$$(1,5,8,6,3,7)(2,9,4)$$0$
$3$$6$$(1,7,3,6,8,5)(2,4,9)$$0$
The blue line marks the conjugacy class containing complex conjugation.