Properties

Label 2.2e2_3_73.4t3.6
Dimension 2
Group $D_4$
Conductor $ 2^{2} \cdot 3 \cdot 73 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$876= 2^{2} \cdot 3 \cdot 73 $
Artin number field: Splitting field of $f= x^{8} + 28 x^{6} - 30 x^{5} + 157 x^{4} + 18 x^{3} - 102 x^{2} - 72 x + 216 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 37 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 3 + 22\cdot 37 + 28\cdot 37^{2} + 25\cdot 37^{3} + 37^{4} + 37^{5} +O\left(37^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 4 + 10\cdot 37 + 37^{2} + 14\cdot 37^{3} + 19\cdot 37^{4} + 33\cdot 37^{5} +O\left(37^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 5 + 35\cdot 37 + 36\cdot 37^{2} + 22\cdot 37^{3} + 25\cdot 37^{4} + 20\cdot 37^{5} +O\left(37^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 10 + 24\cdot 37 + 3\cdot 37^{2} + 14\cdot 37^{3} + 34\cdot 37^{4} + 10\cdot 37^{5} +O\left(37^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 17 + 25\cdot 37 + 33\cdot 37^{2} + 37^{3} + 18\cdot 37^{4} + 15\cdot 37^{5} +O\left(37^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 18 + 4\cdot 37 + 32\cdot 37^{2} + 22\cdot 37^{3} + 31\cdot 37^{4} + 8\cdot 37^{5} +O\left(37^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 19 + 29\cdot 37 + 4\cdot 37^{2} + 11\cdot 37^{3} + 12\cdot 37^{4} + 4\cdot 37^{5} +O\left(37^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 35 + 33\cdot 37 + 6\cdot 37^{2} + 35\cdot 37^{3} + 4\cdot 37^{4} + 16\cdot 37^{5} +O\left(37^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,8)(4,5)(6,7)$
$(1,3,7,4)(2,5,6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,7)(2,6)(3,4)(5,8)$ $-2$
$2$ $2$ $(1,2)(3,8)(4,5)(6,7)$ $0$
$2$ $2$ $(1,5)(2,3)(4,6)(7,8)$ $0$
$2$ $4$ $(1,3,7,4)(2,5,6,8)$ $0$
The blue line marks the conjugacy class containing complex conjugation.