Properties

Label 2.2e2_3_71.4t3.6
Dimension 2
Group $D_4$
Conductor $ 2^{2} \cdot 3 \cdot 71 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$852= 2^{2} \cdot 3 \cdot 71 $
Artin number field: Splitting field of $f= x^{8} + 4 x^{6} - 6 x^{5} + 157 x^{4} + 414 x^{3} + 1380 x^{2} + 1458 x + 2817 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 179 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 24 + 27\cdot 179 + 95\cdot 179^{2} + 112\cdot 179^{3} + 63\cdot 179^{4} +O\left(179^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 28 + 160\cdot 179 + 28\cdot 179^{2} + 34\cdot 179^{3} + 10\cdot 179^{4} +O\left(179^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 57 + 145\cdot 179 + 167\cdot 179^{2} + 138\cdot 179^{3} + 177\cdot 179^{4} +O\left(179^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 103 + 99\cdot 179 + 97\cdot 179^{2} + 28\cdot 179^{3} + 118\cdot 179^{4} +O\left(179^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 164 + 162\cdot 179 + 101\cdot 179^{2} + 155\cdot 179^{3} + 59\cdot 179^{4} +O\left(179^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 170 + 131\cdot 179 + 63\cdot 179^{2} + 156\cdot 179^{3} + 51\cdot 179^{4} +O\left(179^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 174 + 85\cdot 179 + 176\cdot 179^{2} + 77\cdot 179^{3} + 177\cdot 179^{4} +O\left(179^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 175 + 81\cdot 179 + 163\cdot 179^{2} + 11\cdot 179^{3} + 57\cdot 179^{4} +O\left(179^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,5)(4,8)(6,7)$
$(1,3,7,4)(2,8,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,7)(2,6)(3,4)(5,8)$ $-2$
$2$ $2$ $(1,2)(3,5)(4,8)(6,7)$ $0$
$2$ $2$ $(1,8)(2,3)(4,6)(5,7)$ $0$
$2$ $4$ $(1,3,7,4)(2,8,6,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.