Properties

Label 2.2e2_3_7.6t5.2c1
Dimension 2
Group $S_3\times C_3$
Conductor $ 2^{2} \cdot 3 \cdot 7 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$S_3\times C_3$
Conductor:$84= 2^{2} \cdot 3 \cdot 7 $
Artin number field: Splitting field of $f= x^{9} - 3 x^{7} - x^{6} + 3 x^{5} + 2 x^{4} + 4 x^{3} - x^{2} - 5 x + 1 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $S_3\times C_3$
Parity: Odd
Determinant: 1.3_7.6t1.2c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 13 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 13 }$: $ x^{3} + 2 x + 11 $
Roots:
$r_{ 1 }$ $=$ $ 3 a^{2} + a + \left(9 a^{2} + 8 a + 9\right)\cdot 13 + \left(6 a^{2} + 9 a + 4\right)\cdot 13^{2} + \left(7 a^{2} + 4 a + 11\right)\cdot 13^{3} + \left(9 a + 5\right)\cdot 13^{4} + \left(11 a^{2} + 3 a + 4\right)\cdot 13^{5} +O\left(13^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 8 a^{2} + 3 a + 1 + \left(3 a^{2} + 4 a + 1\right)\cdot 13 + \left(6 a^{2} + 6 a\right)\cdot 13^{2} + \left(6 a^{2} + 12 a + 2\right)\cdot 13^{3} + \left(2 a^{2} + 9 a + 2\right)\cdot 13^{4} + \left(3 a^{2} + 12 a + 12\right)\cdot 13^{5} +O\left(13^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 7 a^{2} + 4 a + 1 + \left(12 a^{2} + 3 a + 9\right)\cdot 13 + \left(11 a^{2} + 12 a + 11\right)\cdot 13^{2} + \left(10 a^{2} + 6 a + 2\right)\cdot 13^{3} + \left(3 a^{2} + 9 a + 10\right)\cdot 13^{4} + \left(8 a^{2} + 10 a\right)\cdot 13^{5} +O\left(13^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 3 a^{2} + 3 + \left(12 a^{2} + 8 a + 8\right)\cdot 13 + \left(6 a^{2} + a + 9\right)\cdot 13^{2} + \left(10 a^{2} + 5 a + 11\right)\cdot 13^{3} + \left(a^{2} + 3 a + 9\right)\cdot 13^{4} + \left(4 a^{2} + 5 a + 4\right)\cdot 13^{5} +O\left(13^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 3 a^{2} + 8 a + \left(4 a^{2} + a + 11\right)\cdot 13 + \left(7 a^{2} + 4 a + 9\right)\cdot 13^{2} + \left(7 a^{2} + a + 2\right)\cdot 13^{3} + \left(8 a^{2} + 7 a + 12\right)\cdot 13^{4} + \left(6 a^{2} + 11 a + 2\right)\cdot 13^{5} +O\left(13^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 4 a^{2} + 12 a + 6 + \left(3 a^{2} + 8 a + 11\right)\cdot 13 + \left(a^{2} + 8 a + 9\right)\cdot 13^{2} + \left(6 a^{2} + 10 a + 4\right)\cdot 13^{3} + \left(3 a + 5\right)\cdot 13^{4} + \left(12 a^{2} + 7 a + 5\right)\cdot 13^{5} +O\left(13^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 2 a^{2} + 2 a + 12 + \left(5 a^{2} + 7 a\right)\cdot 13 + \left(12 a^{2} + 2 a + 3\right)\cdot 13^{2} + \left(11 a^{2} + 12 a + 8\right)\cdot 13^{3} + \left(a^{2} + 8 a + 11\right)\cdot 13^{4} + \left(3 a^{2} + a + 10\right)\cdot 13^{5} +O\left(13^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 2 a^{2} + 10 a + 6 + \left(10 a^{2} + 5\right)\cdot 13 + \left(12 a^{2} + 5 a + 4\right)\cdot 13^{2} + \left(8 a^{2} + 8 a + 5\right)\cdot 13^{3} + \left(8 a^{2} + 12 a + 10\right)\cdot 13^{4} + \left(5 a^{2} + 7 a + 6\right)\cdot 13^{5} +O\left(13^{ 6 }\right)$
$r_{ 9 }$ $=$ $ 7 a^{2} + 12 a + 10 + \left(4 a^{2} + 9 a + 8\right)\cdot 13 + \left(12 a^{2} + a + 11\right)\cdot 13^{2} + \left(7 a^{2} + 3 a + 2\right)\cdot 13^{3} + \left(10 a^{2} + 10\right)\cdot 13^{4} + \left(10 a^{2} + 4 a + 3\right)\cdot 13^{5} +O\left(13^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,3)(4,8)(6,9)$
$(2,8)(3,5)(6,7)$
$(1,7,8)(2,3,9)(4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character value
$1$$1$$()$$2$
$3$$2$$(1,3)(4,8)(6,9)$$0$
$1$$3$$(1,4,9)(2,7,5)(3,8,6)$$2 \zeta_{3}$
$1$$3$$(1,9,4)(2,5,7)(3,6,8)$$-2 \zeta_{3} - 2$
$2$$3$$(1,7,8)(2,3,9)(4,5,6)$$\zeta_{3} + 1$
$2$$3$$(1,8,7)(2,9,3)(4,6,5)$$-\zeta_{3}$
$2$$3$$(1,5,3)(2,8,4)(6,9,7)$$-1$
$3$$6$$(1,9,4)(2,3,7,8,5,6)$$0$
$3$$6$$(1,4,9)(2,6,5,8,7,3)$$0$
The blue line marks the conjugacy class containing complex conjugation.