Properties

Label 2.2e2_3_5e2_7e2.6t3.8c1
Dimension 2
Group $D_{6}$
Conductor $ 2^{2} \cdot 3 \cdot 5^{2} \cdot 7^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:$14700= 2^{2} \cdot 3 \cdot 5^{2} \cdot 7^{2} $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} + 2 x^{4} - 19 x^{3} + 76 x^{2} - 97 x + 37 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{6}$
Parity: Odd
Determinant: 1.3.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$: $ x^{2} + 16 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 11 a + 5 + \left(6 a + 14\right)\cdot 17 + 12\cdot 17^{2} + \left(16 a + 3\right)\cdot 17^{3} + \left(4 a + 10\right)\cdot 17^{4} + \left(14 a + 15\right)\cdot 17^{5} + \left(11 a + 15\right)\cdot 17^{6} +O\left(17^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 13 a + 8 + \left(9 a + 12\right)\cdot 17 + \left(3 a + 5\right)\cdot 17^{2} + \left(12 a + 7\right)\cdot 17^{3} + \left(3 a + 13\right)\cdot 17^{4} + \left(2 a + 10\right)\cdot 17^{5} + 5 a\cdot 17^{6} +O\left(17^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 4 a + 4 + \left(7 a + 9\right)\cdot 17 + \left(13 a + 16\right)\cdot 17^{2} + \left(4 a + 15\right)\cdot 17^{3} + \left(13 a + 4\right)\cdot 17^{4} + \left(14 a + 9\right)\cdot 17^{5} + \left(11 a + 3\right)\cdot 17^{6} +O\left(17^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 14 + 5\cdot 17 + 7\cdot 17^{2} + 12\cdot 17^{3} + 3\cdot 17^{4} + 7\cdot 17^{5} + 12\cdot 17^{6} +O\left(17^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 7 + 16\cdot 17 + 17^{2} + 9\cdot 17^{3} + 2\cdot 17^{4} + 5\cdot 17^{6} +O\left(17^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 6 a + 16 + \left(10 a + 9\right)\cdot 17 + \left(16 a + 6\right)\cdot 17^{2} + 2\cdot 17^{3} + \left(12 a + 16\right)\cdot 17^{4} + \left(2 a + 7\right)\cdot 17^{5} + \left(5 a + 13\right)\cdot 17^{6} +O\left(17^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,4)(5,6)$
$(1,2)(3,6)(4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,3)(2,6)(4,5)$$-2$
$3$$2$$(1,2)(3,6)(4,5)$$0$
$3$$2$$(1,5)(3,4)$$0$
$2$$3$$(1,6,5)(2,4,3)$$-1$
$2$$6$$(1,4,6,3,5,2)$$1$
The blue line marks the conjugacy class containing complex conjugation.