Properties

Label 2.2e2_3_5e2_17.6t3.3
Dimension 2
Group $D_{6}$
Conductor $ 2^{2} \cdot 3 \cdot 5^{2} \cdot 17 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:$5100= 2^{2} \cdot 3 \cdot 5^{2} \cdot 17 $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} + 7 x^{4} - 38 x^{3} + 41 x^{2} - 96 x + 511 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{6}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 7 }$ to precision 10.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 7 }$: $ x^{2} + 6 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 2\cdot 7 + 5\cdot 7^{3} + 5\cdot 7^{4} + 6\cdot 7^{5} + 5\cdot 7^{6} + 2\cdot 7^{7} + 7^{8} + 3\cdot 7^{9} +O\left(7^{ 10 }\right)$
$r_{ 2 }$ $=$ $ a + \left(a + 6\right)\cdot 7 + \left(a + 6\right)\cdot 7^{2} + \left(2 a + 3\right)\cdot 7^{3} + 2 a\cdot 7^{4} + \left(a + 4\right)\cdot 7^{5} + \left(4 a + 2\right)\cdot 7^{6} + \left(5 a + 1\right)\cdot 7^{7} + 3 a\cdot 7^{8} + \left(4 a + 5\right)\cdot 7^{9} +O\left(7^{ 10 }\right)$
$r_{ 3 }$ $=$ $ 6 a + 1 + \left(5 a + 6\right)\cdot 7 + \left(5 a + 6\right)\cdot 7^{2} + \left(4 a + 4\right)\cdot 7^{3} + 4 a\cdot 7^{4} + \left(5 a + 3\right)\cdot 7^{5} + \left(2 a + 5\right)\cdot 7^{6} + \left(a + 2\right)\cdot 7^{7} + \left(3 a + 5\right)\cdot 7^{8} + \left(2 a + 5\right)\cdot 7^{9} +O\left(7^{ 10 }\right)$
$r_{ 4 }$ $=$ $ 2 a + 1 + \left(2 a + 1\right)\cdot 7 + \left(5 a + 6\right)\cdot 7^{2} + \left(3 a + 2\right)\cdot 7^{3} + \left(6 a + 1\right)\cdot 7^{5} + 5\cdot 7^{6} + 4\cdot 7^{7} + \left(5 a + 5\right)\cdot 7^{8} + \left(6 a + 4\right)\cdot 7^{9} +O\left(7^{ 10 }\right)$
$r_{ 5 }$ $=$ $ 5 a + 3 + \left(4 a + 1\right)\cdot 7 + \left(a + 2\right)\cdot 7^{2} + \left(3 a + 1\right)\cdot 7^{3} + \left(6 a + 4\right)\cdot 7^{4} + 6\cdot 7^{5} + \left(6 a + 6\right)\cdot 7^{6} + \left(6 a + 3\right)\cdot 7^{7} + \left(a + 3\right)\cdot 7^{8} + 6\cdot 7^{9} +O\left(7^{ 10 }\right)$
$r_{ 6 }$ $=$ $ 4 + 4\cdot 7 + 5\cdot 7^{2} + 2\cdot 7^{3} + 2\cdot 7^{4} + 6\cdot 7^{5} + 7^{6} + 5\cdot 7^{7} + 4\cdot 7^{8} + 2\cdot 7^{9} +O\left(7^{ 10 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,3)(4,5)$
$(1,4,3,6,2,5)$
$(1,2,3)(4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,6)(2,4)(3,5)$ $-2$
$3$ $2$ $(2,3)(4,5)$ $0$
$3$ $2$ $(1,4)(2,6)(3,5)$ $0$
$2$ $3$ $(1,2,3)(4,5,6)$ $-1$
$2$ $6$ $(1,4,3,6,2,5)$ $1$
The blue line marks the conjugacy class containing complex conjugation.