Properties

Label 2.2e2_3_5e2_17.6t3.2c1
Dimension 2
Group $D_{6}$
Conductor $ 2^{2} \cdot 3 \cdot 5^{2} \cdot 17 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:$5100= 2^{2} \cdot 3 \cdot 5^{2} \cdot 17 $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 2 x^{4} - 11 x^{3} - 8 x^{2} - 3 x - 9 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{6}$
Parity: Odd
Determinant: 1.3_17.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{2} + 29 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 9 + 14\cdot 31 + 12\cdot 31^{2} + 17\cdot 31^{3} + 4\cdot 31^{4} + 8\cdot 31^{5} +O\left(31^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 24 a + 9 + \left(25 a + 13\right)\cdot 31 + \left(15 a + 12\right)\cdot 31^{2} + \left(30 a + 15\right)\cdot 31^{3} + \left(28 a + 14\right)\cdot 31^{4} + \left(26 a + 3\right)\cdot 31^{5} +O\left(31^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 15 a + 7 + \left(6 a + 16\right)\cdot 31 + \left(3 a + 14\right)\cdot 31^{2} + \left(4 a + 26\right)\cdot 31^{3} + \left(14 a + 26\right)\cdot 31^{4} + \left(27 a + 26\right)\cdot 31^{5} +O\left(31^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 6 + 25\cdot 31 + 20\cdot 31^{2} + 3\cdot 31^{3} + 16\cdot 31^{4} + 20\cdot 31^{5} +O\left(31^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 7 a + 26 + \left(5 a + 9\right)\cdot 31 + \left(15 a + 18\right)\cdot 31^{2} + 29\cdot 31^{3} + \left(2 a + 10\right)\cdot 31^{4} + \left(4 a + 28\right)\cdot 31^{5} +O\left(31^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 16 a + 6 + \left(24 a + 14\right)\cdot 31 + \left(27 a + 14\right)\cdot 31^{2} + 26 a\cdot 31^{3} + \left(16 a + 20\right)\cdot 31^{4} + \left(3 a + 5\right)\cdot 31^{5} +O\left(31^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,5)(3,6)$
$(1,3)(2,6)(4,5)$
$(1,2,5)(3,4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,4)(2,6)(3,5)$$-2$
$3$$2$$(1,3)(2,6)(4,5)$$0$
$3$$2$$(2,5)(3,6)$$0$
$2$$3$$(1,2,5)(3,4,6)$$-1$
$2$$6$$(1,3,2,4,5,6)$$1$
The blue line marks the conjugacy class containing complex conjugation.