Properties

Label 2.2e2_3_5e2_11.6t3.13
Dimension 2
Group $D_{6}$
Conductor $ 2^{2} \cdot 3 \cdot 5^{2} \cdot 11 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:$3300= 2^{2} \cdot 3 \cdot 5^{2} \cdot 11 $
Artin number field: Splitting field of $f= x^{6} - 40 x^{3} + 125 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{6}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 53 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 53 }$: $ x^{2} + 49 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 28 a + 2 + \left(13 a + 48\right)\cdot 53 + \left(13 a + 40\right)\cdot 53^{2} + \left(41 a + 24\right)\cdot 53^{3} + \left(20 a + 31\right)\cdot 53^{4} + \left(52 a + 18\right)\cdot 53^{5} +O\left(53^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 12 a + 16 + \left(23 a + 41\right)\cdot 53 + \left(15 a + 25\right)\cdot 53^{2} + 30 a\cdot 53^{3} + \left(32 a + 50\right)\cdot 53^{4} + \left(30 a + 2\right)\cdot 53^{5} +O\left(53^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 43 + 36\cdot 53 + 37\cdot 53^{2} + 10\cdot 53^{3} + 53^{4} + 39\cdot 53^{5} +O\left(53^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 26 + 48\cdot 53 + 15\cdot 53^{2} + 52\cdot 53^{3} + 11\cdot 53^{4} + 10\cdot 53^{5} +O\left(53^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 25 a + 8 + \left(39 a + 21\right)\cdot 53 + \left(39 a + 27\right)\cdot 53^{2} + \left(11 a + 17\right)\cdot 53^{3} + \left(32 a + 20\right)\cdot 53^{4} + 48\cdot 53^{5} +O\left(53^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 41 a + 11 + \left(29 a + 16\right)\cdot 53 + \left(37 a + 11\right)\cdot 53^{2} + 22 a\cdot 53^{3} + \left(20 a + 44\right)\cdot 53^{4} + \left(22 a + 39\right)\cdot 53^{5} +O\left(53^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(3,4)(5,6)$
$(2,4)(3,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,6)(2,5)(3,4)$ $-2$
$3$ $2$ $(1,2)(3,4)(5,6)$ $0$
$3$ $2$ $(1,3)(4,6)$ $0$
$2$ $3$ $(1,5,3)(2,4,6)$ $-1$
$2$ $6$ $(1,4,5,6,3,2)$ $1$
The blue line marks the conjugacy class containing complex conjugation.