Properties

Label 2.2e2_3_5_7.8t11.3c2
Dimension 2
Group $Q_8:C_2$
Conductor $ 2^{2} \cdot 3 \cdot 5 \cdot 7 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$Q_8:C_2$
Conductor:$420= 2^{2} \cdot 3 \cdot 5 \cdot 7 $
Artin number field: Splitting field of $f= x^{8} - x^{6} - 4 x^{5} + 4 x^{4} + 2 x^{3} + 4 x^{2} - 10 x + 5 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $Q_8:C_2$
Parity: Odd
Determinant: 1.2e2_3_5_7.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 101 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 21 + 30\cdot 101 + 100\cdot 101^{2} + 100\cdot 101^{3} + 11\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 25 + 84\cdot 101 + 84\cdot 101^{2} + 29\cdot 101^{3} + 14\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 52 + 100\cdot 101 + 29\cdot 101^{2} + 59\cdot 101^{3} + 94\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 63 + 87\cdot 101 + 78\cdot 101^{2} + 68\cdot 101^{3} + 54\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 66 + 84\cdot 101 + 93\cdot 101^{2} + 73\cdot 101^{3} + 40\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 89 + 57\cdot 101 + 74\cdot 101^{2} + 78\cdot 101^{3} + 79\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 94 + 82\cdot 101 + 58\cdot 101^{2} + 46\cdot 101^{3} + 70\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 95 + 77\cdot 101 + 84\cdot 101^{2} + 46\cdot 101^{3} + 37\cdot 101^{4} +O\left(101^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3)(6,8)$
$(1,7,3,2)(4,8,5,6)$
$(1,3)(2,7)(4,5)(6,8)$
$(1,8,3,6)(2,4,7,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,3)(2,7)(4,5)(6,8)$$-2$
$2$$2$$(1,5)(2,8)(3,4)(6,7)$$0$
$2$$2$$(1,3)(6,8)$$0$
$2$$2$$(1,2)(3,7)(4,8)(5,6)$$0$
$1$$4$$(1,8,3,6)(2,4,7,5)$$2 \zeta_{4}$
$1$$4$$(1,6,3,8)(2,5,7,4)$$-2 \zeta_{4}$
$2$$4$$(1,7,3,2)(4,8,5,6)$$0$
$2$$4$$(1,6,3,8)(2,4,7,5)$$0$
$2$$4$$(1,4,3,5)(2,8,7,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.