Properties

Label 2.2e2_3_5_7.8t11.2c1
Dimension 2
Group $Q_8:C_2$
Conductor $ 2^{2} \cdot 3 \cdot 5 \cdot 7 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$Q_8:C_2$
Conductor:$420= 2^{2} \cdot 3 \cdot 5 \cdot 7 $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} + x^{6} + 4 x^{5} + 3 x^{4} + 8 x^{3} + 9 x^{2} + 4 x + 1 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $Q_8:C_2$
Parity: Odd
Determinant: 1.2e2_3_5_7.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 89 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 9 + 58\cdot 89 + 9\cdot 89^{2} + 69\cdot 89^{3} + 53\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 16 + 60\cdot 89 + 6\cdot 89^{2} + 64\cdot 89^{3} + 86\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 21 + 83\cdot 89 + 87\cdot 89^{2} + 6\cdot 89^{3} + 31\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 44 + 65\cdot 89 + 73\cdot 89^{2} + 37\cdot 89^{3} + 6\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 59 + 63\cdot 89 + 50\cdot 89^{2} + 52\cdot 89^{3} + 78\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 64 + 30\cdot 89 + 70\cdot 89^{2} + 9\cdot 89^{3} + 77\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 69 + 26\cdot 89 + 67\cdot 89^{3} + 69\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 76 + 56\cdot 89 + 56\cdot 89^{2} + 48\cdot 89^{3} + 41\cdot 89^{4} +O\left(89^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3,2,4)(5,7,8,6)$
$(5,8)(6,7)$
$(1,5)(2,8)(3,7)(4,6)$
$(1,2)(3,4)(5,8)(6,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,2)(3,4)(5,8)(6,7)$$-2$
$2$$2$$(1,5)(2,8)(3,7)(4,6)$$0$
$2$$2$$(5,8)(6,7)$$0$
$2$$2$$(1,7)(2,6)(3,8)(4,5)$$0$
$1$$4$$(1,3,2,4)(5,7,8,6)$$-2 \zeta_{4}$
$1$$4$$(1,4,2,3)(5,6,8,7)$$2 \zeta_{4}$
$2$$4$$(1,8,2,5)(3,6,4,7)$$0$
$2$$4$$(1,7,2,6)(3,8,4,5)$$0$
$2$$4$$(1,3,2,4)(5,6,8,7)$$0$
The blue line marks the conjugacy class containing complex conjugation.