Properties

Label 2.2e2_3_5_59.6t3.11
Dimension 2
Group $D_{6}$
Conductor $ 2^{2} \cdot 3 \cdot 5 \cdot 59 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:$3540= 2^{2} \cdot 3 \cdot 5 \cdot 59 $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} + 13 x^{4} - 21 x^{3} + 28 x^{2} - 18 x + 6 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{6}$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: $ x^{2} + 21 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 17 a + 16 + \left(11 a + 19\right)\cdot 23 + \left(11 a + 8\right)\cdot 23^{2} + \left(3 a + 1\right)\cdot 23^{3} + \left(5 a + 14\right)\cdot 23^{4} + 19\cdot 23^{5} + \left(21 a + 16\right)\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 21 + 8\cdot 23 + 14\cdot 23^{2} + 22\cdot 23^{3} + 22\cdot 23^{4} + 12\cdot 23^{5} + 4\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 6 a + 4 + \left(11 a + 3\right)\cdot 23 + \left(11 a + 20\right)\cdot 23^{2} + \left(19 a + 19\right)\cdot 23^{3} + \left(17 a + 20\right)\cdot 23^{4} + \left(22 a + 14\right)\cdot 23^{5} + \left(a + 12\right)\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 3 + 14\cdot 23 + 8\cdot 23^{2} + 10\cdot 23^{5} + 18\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 6 a + 8 + \left(11 a + 3\right)\cdot 23 + \left(11 a + 14\right)\cdot 23^{2} + \left(19 a + 21\right)\cdot 23^{3} + \left(17 a + 8\right)\cdot 23^{4} + \left(22 a + 3\right)\cdot 23^{5} + \left(a + 6\right)\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 17 a + 20 + \left(11 a + 19\right)\cdot 23 + \left(11 a + 2\right)\cdot 23^{2} + \left(3 a + 3\right)\cdot 23^{3} + \left(5 a + 2\right)\cdot 23^{4} + 8\cdot 23^{5} + \left(21 a + 10\right)\cdot 23^{6} +O\left(23^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(4,5)$
$(2,3)(4,6)$
$(1,4)(2,5)(3,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,5)(2,4)(3,6)$ $-2$
$3$ $2$ $(1,2)(4,5)$ $0$
$3$ $2$ $(1,4)(2,5)(3,6)$ $0$
$2$ $3$ $(1,3,2)(4,5,6)$ $-1$
$2$ $6$ $(1,6,2,5,3,4)$ $1$
The blue line marks the conjugacy class containing complex conjugation.