Properties

Label 2.2e2_3_5_23.8t11.6
Dimension 2
Group $Q_8:C_2$
Conductor $ 2^{2} \cdot 3 \cdot 5 \cdot 23 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$Q_8:C_2$
Conductor:$1380= 2^{2} \cdot 3 \cdot 5 \cdot 23 $
Artin number field: Splitting field of $f= x^{8} - 3 x^{7} + 6 x^{6} - 16 x^{5} + 40 x^{4} - 39 x^{3} + 64 x^{2} - 98 x + 49 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $Q_8:C_2$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 79 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 6 + 39\cdot 79 + 3\cdot 79^{2} + 48\cdot 79^{3} + 11\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 9 + 36\cdot 79^{2} + 32\cdot 79^{3} + 73\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 10 + 26\cdot 79 + 47\cdot 79^{2} + 28\cdot 79^{3} + 22\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 46 + 71\cdot 79 + 52\cdot 79^{2} + 44\cdot 79^{3} + 57\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 50 + 44\cdot 79 + 40\cdot 79^{2} + 50\cdot 79^{3} +O\left(79^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 55 + 5\cdot 79 + 53\cdot 79^{2} + 28\cdot 79^{3} + 5\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 65 + 29\cdot 79 + 22\cdot 79^{2} + 73\cdot 79^{3} + 63\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 78 + 19\cdot 79 + 60\cdot 79^{2} + 9\cdot 79^{3} + 2\cdot 79^{4} +O\left(79^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8,7,4)(2,6,5,3)$
$(1,7)(2,5)(3,6)(4,8)$
$(1,4,7,8)(2,6,5,3)$
$(1,3)(2,8)(4,5)(6,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,7)(2,5)(3,6)(4,8)$ $-2$ $-2$
$2$ $2$ $(1,3)(2,8)(4,5)(6,7)$ $0$ $0$
$2$ $2$ $(1,5)(2,7)(3,8)(4,6)$ $0$ $0$
$2$ $2$ $(1,7)(4,8)$ $0$ $0$
$1$ $4$ $(1,8,7,4)(2,6,5,3)$ $-2 \zeta_{4}$ $2 \zeta_{4}$
$1$ $4$ $(1,4,7,8)(2,3,5,6)$ $2 \zeta_{4}$ $-2 \zeta_{4}$
$2$ $4$ $(1,4,7,8)(2,6,5,3)$ $0$ $0$
$2$ $4$ $(1,6,7,3)(2,8,5,4)$ $0$ $0$
$2$ $4$ $(1,2,7,5)(3,8,6,4)$ $0$ $0$
The blue line marks the conjugacy class containing complex conjugation.