Properties

Label 2.2e2_3_5_13.3t2.1c1
Dimension 2
Group $S_3$
Conductor $ 2^{2} \cdot 3 \cdot 5 \cdot 13 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$S_3$
Conductor:$780= 2^{2} \cdot 3 \cdot 5 \cdot 13 $
Artin number field: Splitting field of $f= x^{3} - x^{2} - x - 5 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_3$
Parity: Odd
Determinant: 1.3_5_13.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 59 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 10 + 12\cdot 59 + 47\cdot 59^{2} + 10\cdot 59^{3} + 43\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 17 + 46\cdot 59 + 37\cdot 59^{2} + 40\cdot 59^{3} + 31\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 33 + 33\cdot 59^{2} + 7\cdot 59^{3} + 43\cdot 59^{4} +O\left(59^{ 5 }\right)$

Generators of the action on the roots $ r_{ 1 }, r_{ 2 }, r_{ 3 } $

Cycle notation
$(1,2,3)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $ r_{ 1 }, r_{ 2 }, r_{ 3 } $ Character value
$1$$1$$()$$2$
$3$$2$$(1,2)$$0$
$2$$3$$(1,2,3)$$-1$
The blue line marks the conjugacy class containing complex conjugation.