Properties

Label 2.2e2_3_43.6t5.1
Dimension 2
Group $S_3\times C_3$
Conductor $ 2^{2} \cdot 3 \cdot 43 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$S_3\times C_3$
Conductor:$516= 2^{2} \cdot 3 \cdot 43 $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} + 4 x^{4} + x^{3} - 2 x^{2} - x + 7 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $S_3\times C_3$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: $ x^{2} + 38 x + 6 $
Roots:
$r_{ 1 }$ $=$ $ 15 a + 15 + \left(16 a + 20\right)\cdot 41 + \left(37 a + 20\right)\cdot 41^{2} + \left(28 a + 25\right)\cdot 41^{3} + \left(33 a + 20\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 30 a + 16 + \left(33 a + 20\right)\cdot 41 + \left(4 a + 12\right)\cdot 41^{2} + \left(36 a + 30\right)\cdot 41^{3} + \left(15 a + 1\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 18 a + 40 + \left(10 a + 22\right)\cdot 41 + 15\cdot 41^{2} + \left(24 a + 16\right)\cdot 41^{3} + \left(5 a + 21\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 26 a + 19 + \left(24 a + 13\right)\cdot 41 + \left(3 a + 34\right)\cdot 41^{2} + \left(12 a + 33\right)\cdot 41^{3} + \left(7 a + 10\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 11 a + 24 + \left(7 a + 9\right)\cdot 41 + \left(36 a + 34\right)\cdot 41^{2} + \left(4 a + 10\right)\cdot 41^{3} + \left(25 a + 13\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 23 a + 12 + \left(30 a + 36\right)\cdot 41 + \left(40 a + 5\right)\cdot 41^{2} + \left(16 a + 6\right)\cdot 41^{3} + \left(35 a + 14\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,5)(2,6)(3,4)$
$(4,5,6)$
$(1,3,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$3$ $2$ $(1,5)(2,6)(3,4)$ $0$ $0$
$1$ $3$ $(1,2,3)(4,5,6)$ $2 \zeta_{3}$ $-2 \zeta_{3} - 2$
$1$ $3$ $(1,3,2)(4,6,5)$ $-2 \zeta_{3} - 2$ $2 \zeta_{3}$
$2$ $3$ $(1,3,2)$ $-\zeta_{3}$ $\zeta_{3} + 1$
$2$ $3$ $(1,2,3)$ $\zeta_{3} + 1$ $-\zeta_{3}$
$2$ $3$ $(1,3,2)(4,5,6)$ $-1$ $-1$
$3$ $6$ $(1,6,2,4,3,5)$ $0$ $0$
$3$ $6$ $(1,5,3,4,2,6)$ $0$ $0$
The blue line marks the conjugacy class containing complex conjugation.