Properties

Label 2.2e2_3_31.6t5.1c2
Dimension 2
Group $S_3\times C_3$
Conductor $ 2^{2} \cdot 3 \cdot 31 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$S_3\times C_3$
Conductor:$372= 2^{2} \cdot 3 \cdot 31 $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 8 x^{4} - 3 x^{3} + 18 x^{2} + x + 13 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $S_3\times C_3$
Parity: Odd
Determinant: 1.3_31.6t1.2c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: $ x^{2} + 21 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 16 a + 11 + \left(5 a + 9\right)\cdot 23 + \left(12 a + 12\right)\cdot 23^{2} + \left(22 a + 17\right)\cdot 23^{3} + \left(17 a + 13\right)\cdot 23^{4} + \left(9 a + 6\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 2 a + 21 + \left(12 a + 17\right)\cdot 23 + \left(17 a + 14\right)\cdot 23^{2} + \left(11 a + 3\right)\cdot 23^{3} + \left(12 a + 17\right)\cdot 23^{4} + \left(22 a + 16\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 9 a + 22 + \left(a + 12\right)\cdot 23 + 21\cdot 23^{2} + \left(7 a + 9\right)\cdot 23^{3} + \left(17 a + 22\right)\cdot 23^{4} + \left(8 a + 16\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 7 a + 20 + \left(17 a + 4\right)\cdot 23 + \left(10 a + 8\right)\cdot 23^{2} + 4\cdot 23^{3} + \left(5 a + 4\right)\cdot 23^{4} + \left(13 a + 8\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 14 a + 17 + \left(21 a + 6\right)\cdot 23 + \left(22 a + 20\right)\cdot 23^{2} + 15 a\cdot 23^{3} + \left(5 a + 4\right)\cdot 23^{4} + \left(14 a + 17\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 21 a + 2 + \left(10 a + 17\right)\cdot 23 + \left(5 a + 14\right)\cdot 23^{2} + \left(11 a + 9\right)\cdot 23^{3} + \left(10 a + 7\right)\cdot 23^{4} + 3\cdot 23^{5} +O\left(23^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,4,3,5,2,6)$
$(1,3,2)(4,5,6)$
$(4,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$2$
$3$$2$$(1,5)(2,4)(3,6)$$0$
$1$$3$$(1,3,2)(4,5,6)$$-2 \zeta_{3} - 2$
$1$$3$$(1,2,3)(4,6,5)$$2 \zeta_{3}$
$2$$3$$(4,6,5)$$\zeta_{3} + 1$
$2$$3$$(4,5,6)$$-\zeta_{3}$
$2$$3$$(1,2,3)(4,5,6)$$-1$
$3$$6$$(1,4,3,5,2,6)$$0$
$3$$6$$(1,6,2,5,3,4)$$0$
The blue line marks the conjugacy class containing complex conjugation.