Properties

Label 2.2e2_3_271.3t2.2
Dimension 2
Group $S_3$
Conductor $ 2^{2} \cdot 3 \cdot 271 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$S_3$
Conductor:$3252= 2^{2} \cdot 3 \cdot 271 $
Artin number field: Splitting field of $f= x^{3} - x^{2} - 9 x + 3 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_3$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 29 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 5 + 29 + 8\cdot 29^{2} + 19\cdot 29^{3} + 9\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 12 + 28\cdot 29 + 23\cdot 29^{2} + 6\cdot 29^{3} + 10\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 13 + 28\cdot 29 + 25\cdot 29^{2} + 2\cdot 29^{3} + 9\cdot 29^{4} +O\left(29^{ 5 }\right)$

Generators of the action on the roots $ r_{ 1 }, r_{ 2 }, r_{ 3 } $

Cycle notation
$(1,2,3)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $ r_{ 1 }, r_{ 2 }, r_{ 3 } $ Character values
$c1$
$1$ $1$ $()$ $2$
$3$ $2$ $(1,2)$ $0$
$2$ $3$ $(1,2,3)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.