Properties

Label 2.2e2_3_17_73e2.6t3.2
Dimension 2
Group $D_{6}$
Conductor $ 2^{2} \cdot 3 \cdot 17 \cdot 73^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:$1087116= 2^{2} \cdot 3 \cdot 17 \cdot 73^{2} $
Artin number field: Splitting field of $f= x^{6} - x^{5} - 53 x^{4} + 41 x^{3} + 988 x^{2} - 28 x - 6546 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{6}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 37 }$ to precision 8.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 37 }$: $ x^{2} + 33 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 7 a + 20 + \left(36 a + 32\right)\cdot 37 + \left(5 a + 9\right)\cdot 37^{2} + \left(29 a + 21\right)\cdot 37^{3} + \left(30 a + 13\right)\cdot 37^{4} + \left(5 a + 7\right)\cdot 37^{5} + \left(33 a + 28\right)\cdot 37^{6} + \left(18 a + 32\right)\cdot 37^{7} +O\left(37^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 34 + 14\cdot 37 + 28\cdot 37^{2} + 12\cdot 37^{3} + 19\cdot 37^{4} + 11\cdot 37^{5} + 27\cdot 37^{6} + 8\cdot 37^{7} +O\left(37^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 7 a + 14 + \left(36 a + 35\right)\cdot 37 + \left(5 a + 22\right)\cdot 37^{2} + \left(29 a + 21\right)\cdot 37^{3} + \left(30 a + 18\right)\cdot 37^{4} + \left(5 a + 19\right)\cdot 37^{5} + \left(33 a + 23\right)\cdot 37^{6} + \left(18 a + 16\right)\cdot 37^{7} +O\left(37^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 30 a + 5 + 25\cdot 37 + \left(31 a + 10\right)\cdot 37^{2} + \left(7 a + 21\right)\cdot 37^{3} + \left(6 a + 1\right)\cdot 37^{4} + \left(31 a + 12\right)\cdot 37^{5} + \left(3 a + 2\right)\cdot 37^{6} + \left(18 a + 22\right)\cdot 37^{7} +O\left(37^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 30 a + 11 + 22\cdot 37 + \left(31 a + 34\right)\cdot 37^{2} + \left(7 a + 20\right)\cdot 37^{3} + \left(6 a + 33\right)\cdot 37^{4} + \left(31 a + 36\right)\cdot 37^{5} + \left(3 a + 6\right)\cdot 37^{6} + \left(18 a + 1\right)\cdot 37^{7} +O\left(37^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 28 + 17\cdot 37 + 4\cdot 37^{2} + 13\cdot 37^{3} + 24\cdot 37^{4} + 23\cdot 37^{5} + 22\cdot 37^{6} + 29\cdot 37^{7} +O\left(37^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(3,6)$
$(1,3)(2,6)(4,5)$
$(2,5)(4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,3)(2,6)(4,5)$ $-2$
$3$ $2$ $(1,2)(3,6)$ $0$
$3$ $2$ $(1,6)(2,3)(4,5)$ $0$
$2$ $3$ $(1,5,2)(3,4,6)$ $-1$
$2$ $6$ $(1,4,2,3,5,6)$ $1$
The blue line marks the conjugacy class containing complex conjugation.