Properties

Label 2.2e2_3_17.6t3.2c1
Dimension 2
Group $D_{6}$
Conductor $ 2^{2} \cdot 3 \cdot 17 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:$204= 2^{2} \cdot 3 \cdot 17 $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} + 5 x^{4} - 5 x^{3} + 4 x^{2} - 2 x - 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{6}$
Parity: Odd
Determinant: 1.3_17.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 47 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 47 }$: $ x^{2} + 45 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 42 a + 36 + \left(11 a + 8\right)\cdot 47 + \left(32 a + 35\right)\cdot 47^{2} + 3\cdot 47^{3} + \left(16 a + 3\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 5 a + 26 + \left(35 a + 37\right)\cdot 47 + \left(14 a + 40\right)\cdot 47^{2} + \left(46 a + 19\right)\cdot 47^{3} + \left(30 a + 34\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 5 a + 12 + \left(35 a + 38\right)\cdot 47 + \left(14 a + 11\right)\cdot 47^{2} + \left(46 a + 43\right)\cdot 47^{3} + \left(30 a + 43\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 42 + 44\cdot 47 + 16\cdot 47^{2} + 7\cdot 47^{3} + 25\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 42 a + 22 + \left(11 a + 9\right)\cdot 47 + \left(32 a + 6\right)\cdot 47^{2} + 27\cdot 47^{3} + \left(16 a + 12\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 6 + 2\cdot 47 + 30\cdot 47^{2} + 39\cdot 47^{3} + 21\cdot 47^{4} +O\left(47^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,6)(4,5)$
$(1,3)(2,5)(4,6)$
$(1,2)(3,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,3)(2,5)(4,6)$$-2$
$3$$2$$(1,2)(3,5)$$0$
$3$$2$$(1,5)(2,3)(4,6)$$0$
$2$$3$$(1,6,2)(3,4,5)$$-1$
$2$$6$$(1,4,2,3,6,5)$$1$
The blue line marks the conjugacy class containing complex conjugation.