Basic invariants
| Dimension: | $2$ |
| Group: | $D_{6}$ |
| Conductor: | \(204\)\(\medspace = 2^{2} \cdot 3 \cdot 17 \) |
| Frobenius-Schur indicator: | $1$ |
| Root number: | $1$ |
| Artin stem field: | Galois closure of 6.0.124848.1 |
| Galois orbit size: | $1$ |
| Smallest permutation container: | $D_{6}$ |
| Parity: | odd |
| Determinant: | 1.51.2t1.a.a |
| Projective image: | $S_3$ |
| Projective stem field: | Galois closure of 3.1.204.1 |
Defining polynomial
| $f(x)$ | $=$ |
\( x^{6} - x^{5} - 4x^{4} + x^{3} + 4x^{2} + 3x + 3 \)
|
The roots of $f$ are computed in an extension of $\Q_{ 7 }$ to precision 8.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 7 }$:
\( x^{2} + 6x + 3 \)
Roots:
| $r_{ 1 }$ | $=$ |
\( 1 + 7 + 2\cdot 7^{2} + 7^{3} + 7^{4} + 3\cdot 7^{5} + 5\cdot 7^{6} + 3\cdot 7^{7} +O(7^{8})\)
|
| $r_{ 2 }$ | $=$ |
\( 3 a + 5 + \left(4 a + 6\right)\cdot 7 + \left(2 a + 5\right)\cdot 7^{2} + \left(2 a + 2\right)\cdot 7^{3} + \left(4 a + 6\right)\cdot 7^{4} + \left(6 a + 3\right)\cdot 7^{5} + \left(5 a + 5\right)\cdot 7^{6} + 5 a\cdot 7^{7} +O(7^{8})\)
|
| $r_{ 3 }$ | $=$ |
\( a + 5 + a\cdot 7 + \left(a + 6\right)\cdot 7^{2} + \left(5 a + 5\right)\cdot 7^{3} + \left(2 a + 3\right)\cdot 7^{4} + \left(6 a + 2\right)\cdot 7^{5} + \left(6 a + 4\right)\cdot 7^{6} + \left(3 a + 1\right)\cdot 7^{7} +O(7^{8})\)
|
| $r_{ 4 }$ | $=$ |
\( 4 a + 1 + \left(2 a + 1\right)\cdot 7 + \left(4 a + 4\right)\cdot 7^{2} + \left(4 a + 2\right)\cdot 7^{3} + \left(2 a + 1\right)\cdot 7^{4} + 6\cdot 7^{5} + \left(a + 4\right)\cdot 7^{6} + a\cdot 7^{7} +O(7^{8})\)
|
| $r_{ 5 }$ | $=$ |
\( 6 a + 6 + 5 a\cdot 7 + \left(5 a + 6\right)\cdot 7^{2} + \left(a + 2\right)\cdot 7^{3} + \left(4 a + 1\right)\cdot 7^{4} + 6\cdot 7^{5} + 4\cdot 7^{6} + \left(3 a + 5\right)\cdot 7^{7} +O(7^{8})\)
|
| $r_{ 6 }$ | $=$ |
\( 4 + 3\cdot 7 + 3\cdot 7^{2} + 5\cdot 7^{3} + 6\cdot 7^{4} + 5\cdot 7^{5} + 2\cdot 7^{6} + 7^{7} +O(7^{8})\)
|
Generators of the action on the roots $r_1, \ldots, r_{ 6 }$
| Cycle notation |
Character values on conjugacy classes
| Size | Order | Action on $r_1, \ldots, r_{ 6 }$ | Character value | Complex conjugation |
| $1$ | $1$ | $()$ | $2$ | |
| $1$ | $2$ | $(1,6)(2,5)(3,4)$ | $-2$ | |
| $3$ | $2$ | $(2,4)(3,5)$ | $0$ | |
| $3$ | $2$ | $(1,2)(3,4)(5,6)$ | $0$ | ✓ |
| $2$ | $3$ | $(1,3,5)(2,6,4)$ | $-1$ | |
| $2$ | $6$ | $(1,2,3,6,5,4)$ | $1$ |