Properties

Label 2.2e2_3_167.4t3.6c1
Dimension 2
Group $D_4$
Conductor $ 2^{2} \cdot 3 \cdot 167 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$2004= 2^{2} \cdot 3 \cdot 167 $
Artin number field: Splitting field of $f= x^{8} - 2 x^{6} + 145 x^{4} + 1860 x^{2} + 5184 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd
Determinant: 1.2e2_3_167.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 157 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 2 + 125\cdot 157 + 115\cdot 157^{2} + 59\cdot 157^{3} + 40\cdot 157^{4} +O\left(157^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 8 + 70\cdot 157 + 89\cdot 157^{2} + 40\cdot 157^{3} + 55\cdot 157^{4} +O\left(157^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 11 + 38\cdot 157 + 106\cdot 157^{2} + 133\cdot 157^{3} + 21\cdot 157^{4} +O\left(157^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 21 + 76\cdot 157 + 154\cdot 157^{2} + 76\cdot 157^{3} + 117\cdot 157^{4} +O\left(157^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 136 + 80\cdot 157 + 2\cdot 157^{2} + 80\cdot 157^{3} + 39\cdot 157^{4} +O\left(157^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 146 + 118\cdot 157 + 50\cdot 157^{2} + 23\cdot 157^{3} + 135\cdot 157^{4} +O\left(157^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 149 + 86\cdot 157 + 67\cdot 157^{2} + 116\cdot 157^{3} + 101\cdot 157^{4} +O\left(157^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 155 + 31\cdot 157 + 41\cdot 157^{2} + 97\cdot 157^{3} + 116\cdot 157^{4} +O\left(157^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2,3,5)(4,8,7,6)$
$(1,4)(2,6)(3,7)(5,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,3)(2,5)(4,7)(6,8)$$-2$
$2$$2$$(1,4)(2,6)(3,7)(5,8)$$0$
$2$$2$$(1,6)(2,7)(3,8)(4,5)$$0$
$2$$4$$(1,2,3,5)(4,8,7,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.