Properties

Label 2.2e2_3_137.9t3.1c3
Dimension 2
Group $D_{9}$
Conductor $ 2^{2} \cdot 3 \cdot 137 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{9}$
Conductor:$1644= 2^{2} \cdot 3 \cdot 137 $
Artin number field: Splitting field of $f= x^{9} - x^{8} + 5 x^{6} + 22 x^{5} + 33 x^{4} + 43 x^{3} + 32 x^{2} + 24 x - 6 $ over $\Q$
Size of Galois orbit: 3
Smallest containing permutation representation: $D_{9}$
Parity: Odd
Determinant: 1.3_137.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: $ x^{3} + x + 35 $
Roots:
$r_{ 1 }$ $=$ $ 5 a^{2} + 23 a + 5 + \left(18 a^{2} + a + 36\right)\cdot 41 + \left(4 a^{2} + 26 a + 37\right)\cdot 41^{2} + \left(12 a^{2} + 21 a + 2\right)\cdot 41^{3} + \left(29 a^{2} + 10 a + 40\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 27 a^{2} + a + 26 + \left(2 a^{2} + 4 a + 22\right)\cdot 41 + \left(18 a^{2} + 29\right)\cdot 41^{2} + \left(38 a^{2} + 4 a + 11\right)\cdot 41^{3} + \left(25 a^{2} + 35 a + 5\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 32 a^{2} + 34 a + 23 + \left(22 a^{2} + 13 a + 25\right)\cdot 41 + \left(23 a^{2} + 19 a + 9\right)\cdot 41^{2} + \left(10 a^{2} + 25 a + 29\right)\cdot 41^{3} + \left(33 a^{2} + 16 a + 1\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 38 a^{2} + 16 a + 6 + \left(17 a^{2} + 10 a + 19\right)\cdot 41 + \left(a^{2} + 26 a + 18\right)\cdot 41^{2} + \left(24 a^{2} + 8 a + 29\right)\cdot 41^{3} + \left(9 a^{2} + 36 a + 21\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 29 a^{2} + 30 a + 10 + \left(33 a^{2} + 11 a + 32\right)\cdot 41 + \left(9 a^{2} + 7 a + 8\right)\cdot 41^{2} + \left(34 a^{2} + 14 a + 28\right)\cdot 41^{3} + \left(37 a^{2} + 2 a + 16\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 23 a^{2} + 35 a + 6 + \left(22 a^{2} + 7 a + 11\right)\cdot 41 + \left(24 a^{2} + 21 a + 32\right)\cdot 41^{2} + \left(39 a^{2} + 13 a + 31\right)\cdot 41^{3} + \left(18 a^{2} + a + 17\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 4 a^{2} + 25 a + 18 + \left(25 a + 10\right)\cdot 41 + \left(13 a^{2} + 36 a + 16\right)\cdot 41^{2} + \left(18 a^{2} + 34 a + 34\right)\cdot 41^{3} + \left(19 a^{2} + 13 a + 19\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 30 a^{2} + 17 a + 38 + \left(25 a^{2} + 21 a + 26\right)\cdot 41 + \left(6 a^{2} + 12 a + 6\right)\cdot 41^{2} + \left(8 a^{2} + 13 a + 38\right)\cdot 41^{3} + \left(25 a^{2} + 37 a + 21\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 9 }$ $=$ $ 17 a^{2} + 24 a + 33 + \left(20 a^{2} + 26 a + 20\right)\cdot 41 + \left(21 a^{2} + 14 a + 4\right)\cdot 41^{2} + \left(19 a^{2} + 28 a + 40\right)\cdot 41^{3} + \left(5 a^{2} + 10 a + 18\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,8,9,3,6,2,7,5,4)$
$(1,3,7)(2,4,9)(5,8,6)$
$(1,6)(2,4)(3,8)(5,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character value
$1$$1$$()$$2$
$9$$2$$(1,6)(2,4)(3,8)(5,7)$$0$
$2$$3$$(1,3,7)(2,4,9)(5,8,6)$$-1$
$2$$9$$(1,8,9,3,6,2,7,5,4)$$-\zeta_{9}^{5} - \zeta_{9}^{2} + \zeta_{9}$
$2$$9$$(1,9,6,7,4,8,3,2,5)$$-\zeta_{9}^{4} + \zeta_{9}^{2} - \zeta_{9}$
$2$$9$$(1,6,4,3,5,9,7,8,2)$$\zeta_{9}^{5} + \zeta_{9}^{4}$
The blue line marks the conjugacy class containing complex conjugation.