Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: $ x^{3} + x + 35 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 5 a^{2} + 23 a + 5 + \left(18 a^{2} + a + 36\right)\cdot 41 + \left(4 a^{2} + 26 a + 37\right)\cdot 41^{2} + \left(12 a^{2} + 21 a + 2\right)\cdot 41^{3} + \left(29 a^{2} + 10 a + 40\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 27 a^{2} + a + 26 + \left(2 a^{2} + 4 a + 22\right)\cdot 41 + \left(18 a^{2} + 29\right)\cdot 41^{2} + \left(38 a^{2} + 4 a + 11\right)\cdot 41^{3} + \left(25 a^{2} + 35 a + 5\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 32 a^{2} + 34 a + 23 + \left(22 a^{2} + 13 a + 25\right)\cdot 41 + \left(23 a^{2} + 19 a + 9\right)\cdot 41^{2} + \left(10 a^{2} + 25 a + 29\right)\cdot 41^{3} + \left(33 a^{2} + 16 a + 1\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 38 a^{2} + 16 a + 6 + \left(17 a^{2} + 10 a + 19\right)\cdot 41 + \left(a^{2} + 26 a + 18\right)\cdot 41^{2} + \left(24 a^{2} + 8 a + 29\right)\cdot 41^{3} + \left(9 a^{2} + 36 a + 21\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 29 a^{2} + 30 a + 10 + \left(33 a^{2} + 11 a + 32\right)\cdot 41 + \left(9 a^{2} + 7 a + 8\right)\cdot 41^{2} + \left(34 a^{2} + 14 a + 28\right)\cdot 41^{3} + \left(37 a^{2} + 2 a + 16\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 23 a^{2} + 35 a + 6 + \left(22 a^{2} + 7 a + 11\right)\cdot 41 + \left(24 a^{2} + 21 a + 32\right)\cdot 41^{2} + \left(39 a^{2} + 13 a + 31\right)\cdot 41^{3} + \left(18 a^{2} + a + 17\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 4 a^{2} + 25 a + 18 + \left(25 a + 10\right)\cdot 41 + \left(13 a^{2} + 36 a + 16\right)\cdot 41^{2} + \left(18 a^{2} + 34 a + 34\right)\cdot 41^{3} + \left(19 a^{2} + 13 a + 19\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 30 a^{2} + 17 a + 38 + \left(25 a^{2} + 21 a + 26\right)\cdot 41 + \left(6 a^{2} + 12 a + 6\right)\cdot 41^{2} + \left(8 a^{2} + 13 a + 38\right)\cdot 41^{3} + \left(25 a^{2} + 37 a + 21\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$ |
| $r_{ 9 }$ |
$=$ |
$ 17 a^{2} + 24 a + 33 + \left(20 a^{2} + 26 a + 20\right)\cdot 41 + \left(21 a^{2} + 14 a + 4\right)\cdot 41^{2} + \left(19 a^{2} + 28 a + 40\right)\cdot 41^{3} + \left(5 a^{2} + 10 a + 18\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 9 }$
| Cycle notation |
| $(1,8,9,3,6,2,7,5,4)$ |
| $(1,3,7)(2,4,9)(5,8,6)$ |
| $(1,6)(2,4)(3,8)(5,7)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 9 }$
| Character values |
| | |
$c1$ |
$c2$ |
$c3$ |
| $1$ |
$1$ |
$()$ |
$2$ |
$2$ |
$2$ |
| $9$ |
$2$ |
$(1,6)(2,4)(3,8)(5,7)$ |
$0$ |
$0$ |
$0$ |
| $2$ |
$3$ |
$(1,3,7)(2,4,9)(5,8,6)$ |
$-1$ |
$-1$ |
$-1$ |
| $2$ |
$9$ |
$(1,8,9,3,6,2,7,5,4)$ |
$-\zeta_{9}^{4} + \zeta_{9}^{2} - \zeta_{9}$ |
$\zeta_{9}^{5} + \zeta_{9}^{4}$ |
$-\zeta_{9}^{5} - \zeta_{9}^{2} + \zeta_{9}$ |
| $2$ |
$9$ |
$(1,9,6,7,4,8,3,2,5)$ |
$\zeta_{9}^{5} + \zeta_{9}^{4}$ |
$-\zeta_{9}^{5} - \zeta_{9}^{2} + \zeta_{9}$ |
$-\zeta_{9}^{4} + \zeta_{9}^{2} - \zeta_{9}$ |
| $2$ |
$9$ |
$(1,6,4,3,5,9,7,8,2)$ |
$-\zeta_{9}^{5} - \zeta_{9}^{2} + \zeta_{9}$ |
$-\zeta_{9}^{4} + \zeta_{9}^{2} - \zeta_{9}$ |
$\zeta_{9}^{5} + \zeta_{9}^{4}$ |
The blue line marks the conjugacy class containing complex conjugation.