Properties

Label 2.2e2_3_13.6t5.2c1
Dimension 2
Group $S_3\times C_3$
Conductor $ 2^{2} \cdot 3 \cdot 13 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$S_3\times C_3$
Conductor:$156= 2^{2} \cdot 3 \cdot 13 $
Artin number field: Splitting field of $f= x^{9} - x^{7} - 3 x^{6} + 9 x^{5} + 2 x^{4} - 24 x^{3} - 9 x^{2} - x - 1 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $S_3\times C_3$
Parity: Odd
Determinant: 1.3_13.6t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: $ x^{3} + 4 x + 17 $
Roots:
$r_{ 1 }$ $=$ $ 10 a^{2} + 2 a + 14 + \left(11 a^{2} + 4 a + 11\right)\cdot 19 + \left(a^{2} + a + 10\right)\cdot 19^{2} + \left(11 a + 6\right)\cdot 19^{3} + \left(7 a^{2} + 10 a + 12\right)\cdot 19^{4} + \left(2 a^{2} + 11 a + 12\right)\cdot 19^{5} +O\left(19^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 16 a^{2} + 15 a + 11 + \left(16 a^{2} + 5 a\right)\cdot 19 + \left(5 a^{2} + 15 a + 3\right)\cdot 19^{2} + \left(10 a^{2} + 4 a + 2\right)\cdot 19^{3} + \left(10 a^{2} + 3 a + 9\right)\cdot 19^{4} + \left(a^{2} + 10\right)\cdot 19^{5} +O\left(19^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 2 a^{2} + 2 a + 18 + \left(a^{2} + 3 a + 2\right)\cdot 19 + \left(2 a^{2} + 11 a + 18\right)\cdot 19^{2} + \left(5 a^{2} + 13 a\right)\cdot 19^{3} + \left(18 a^{2} + 8 a + 17\right)\cdot 19^{4} + \left(11 a^{2} + 17 a + 12\right)\cdot 19^{5} +O\left(19^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 7 a^{2} + 15 a + 6 + \left(6 a^{2} + 11 a + 4\right)\cdot 19 + \left(15 a^{2} + 6 a + 9\right)\cdot 19^{2} + \left(13 a^{2} + 13 a + 11\right)\cdot 19^{3} + \left(12 a^{2} + 18 a + 8\right)\cdot 19^{4} + \left(4 a^{2} + 8 a + 12\right)\cdot 19^{5} +O\left(19^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 11 a^{2} + a + 4 + \left(9 a^{2} + 4 a\right)\cdot 19 + \left(10 a^{2} + 4 a + 9\right)\cdot 19^{2} + \left(13 a^{2} + 16 a + 4\right)\cdot 19^{3} + \left(18 a^{2} + 6 a + 18\right)\cdot 19^{4} + \left(11 a^{2} + 12 a + 12\right)\cdot 19^{5} +O\left(19^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 2 a^{2} + 15 a + 18 + \left(8 a + 12\right)\cdot 19 + \left(15 a^{2} + 15 a + 14\right)\cdot 19^{2} + \left(13 a^{2} + 11 a + 17\right)\cdot 19^{3} + \left(8 a^{2} + 7 a + 16\right)\cdot 19^{4} + \left(2 a^{2} + 14 a + 12\right)\cdot 19^{5} +O\left(19^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 6 a^{2} + 3 a + 16 + \left(9 a^{2} + 6 a + 5\right)\cdot 19 + \left(12 a^{2} + 18 a + 14\right)\cdot 19^{2} + \left(10 a^{2} + 9 a + 15\right)\cdot 19^{3} + \left(10 a^{2} + 4 a + 2\right)\cdot 19^{4} + \left(4 a^{2} + 11 a + 12\right)\cdot 19^{5} +O\left(19^{ 6 }\right)$
$r_{ 8 }$ $=$ $ a^{2} + 9 + \left(7 a^{2} + 2 a + 12\right)\cdot 19 + \left(7 a^{2} + 2 a\right)\cdot 19^{2} + \left(12 a + 1\right)\cdot 19^{3} + \left(6 a^{2} + 11 a + 16\right)\cdot 19^{4} + \left(10 a^{2} + 6 a + 14\right)\cdot 19^{5} +O\left(19^{ 6 }\right)$
$r_{ 9 }$ $=$ $ 2 a^{2} + 4 a + 18 + \left(14 a^{2} + 11 a + 5\right)\cdot 19 + \left(5 a^{2} + a + 15\right)\cdot 19^{2} + \left(8 a^{2} + 2 a + 15\right)\cdot 19^{3} + \left(2 a^{2} + 4 a + 12\right)\cdot 19^{4} + \left(7 a^{2} + 12 a + 12\right)\cdot 19^{5} +O\left(19^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,5)(3,6)(4,7)$
$(1,2,3,9,4,8)(5,7,6)$
$(2,7)(5,9)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character value
$1$$1$$()$$2$
$3$$2$$(1,5)(3,6)(4,7)$$0$
$1$$3$$(1,3,4)(2,9,8)(5,6,7)$$2 \zeta_{3}$
$1$$3$$(1,4,3)(2,8,9)(5,7,6)$$-2 \zeta_{3} - 2$
$2$$3$$(1,7,8)(2,3,5)(4,6,9)$$\zeta_{3} + 1$
$2$$3$$(1,8,7)(2,5,3)(4,9,6)$$-\zeta_{3}$
$2$$3$$(1,9,5)(2,7,4)(3,8,6)$$-1$
$3$$6$$(1,2,3,9,4,8)(5,7,6)$$0$
$3$$6$$(1,8,4,9,3,2)(5,6,7)$$0$
The blue line marks the conjugacy class containing complex conjugation.