Properties

Label 2.2e2_3_13.6t5.1c1
Dimension 2
Group $S_3\times C_3$
Conductor $ 2^{2} \cdot 3 \cdot 13 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$S_3\times C_3$
Conductor:$156= 2^{2} \cdot 3 \cdot 13 $
Artin number field: Splitting field of $f= x^{6} - x^{5} - 4 x^{4} + 3 x^{3} + 6 x^{2} - 5 x + 1 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $S_3\times C_3$
Parity: Odd
Determinant: 1.3_13.6t1.1c2

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 47 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 47 }$: $ x^{2} + 45 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 4 a + 21 + \left(31 a + 30\right)\cdot 47 + \left(4 a + 7\right)\cdot 47^{2} + \left(17 a + 12\right)\cdot 47^{3} + \left(33 a + 32\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 5 a + 12 + \left(6 a + 36\right)\cdot 47 + \left(22 a + 1\right)\cdot 47^{2} + \left(18 a + 42\right)\cdot 47^{3} + \left(36 a + 20\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 42 a + 22 + \left(40 a + 43\right)\cdot 47 + \left(24 a + 39\right)\cdot 47^{2} + \left(28 a + 9\right)\cdot 47^{3} + \left(10 a + 28\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 12 a + 17 + \left(41 a + 6\right)\cdot 47 + \left(38 a + 11\right)\cdot 47^{2} + \left(27 a + 9\right)\cdot 47^{3} + \left(23 a + 26\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 35 a + 41 + \left(5 a + 29\right)\cdot 47 + 8 a\cdot 47^{2} + \left(19 a + 26\right)\cdot 47^{3} + \left(23 a + 45\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 43 a + 29 + \left(15 a + 41\right)\cdot 47 + \left(42 a + 32\right)\cdot 47^{2} + \left(29 a + 41\right)\cdot 47^{3} + \left(13 a + 34\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,5,2)$
$(3,6,4)$
$(1,3,5,6,2,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$2$
$3$$2$$(1,6)(2,3)(4,5)$$0$
$1$$3$$(1,5,2)(3,6,4)$$2 \zeta_{3}$
$1$$3$$(1,2,5)(3,4,6)$$-2 \zeta_{3} - 2$
$2$$3$$(1,5,2)$$\zeta_{3} + 1$
$2$$3$$(1,2,5)$$-\zeta_{3}$
$2$$3$$(1,2,5)(3,6,4)$$-1$
$3$$6$$(1,3,5,6,2,4)$$0$
$3$$6$$(1,4,2,6,5,3)$$0$
The blue line marks the conjugacy class containing complex conjugation.