Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 47 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 47 }$: $ x^{2} + 45 x + 5 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 4 a + 21 + \left(31 a + 30\right)\cdot 47 + \left(4 a + 7\right)\cdot 47^{2} + \left(17 a + 12\right)\cdot 47^{3} + \left(33 a + 32\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 5 a + 12 + \left(6 a + 36\right)\cdot 47 + \left(22 a + 1\right)\cdot 47^{2} + \left(18 a + 42\right)\cdot 47^{3} + \left(36 a + 20\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 42 a + 22 + \left(40 a + 43\right)\cdot 47 + \left(24 a + 39\right)\cdot 47^{2} + \left(28 a + 9\right)\cdot 47^{3} + \left(10 a + 28\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 12 a + 17 + \left(41 a + 6\right)\cdot 47 + \left(38 a + 11\right)\cdot 47^{2} + \left(27 a + 9\right)\cdot 47^{3} + \left(23 a + 26\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 35 a + 41 + \left(5 a + 29\right)\cdot 47 + 8 a\cdot 47^{2} + \left(19 a + 26\right)\cdot 47^{3} + \left(23 a + 45\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 43 a + 29 + \left(15 a + 41\right)\cdot 47 + \left(42 a + 32\right)\cdot 47^{2} + \left(29 a + 41\right)\cdot 47^{3} + \left(13 a + 34\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
| Cycle notation |
| $(1,5,2)$ |
| $(3,6,4)$ |
| $(1,3,5,6,2,4)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character values |
| | |
$c1$ |
$c2$ |
| $1$ |
$1$ |
$()$ |
$2$ |
$2$ |
| $3$ |
$2$ |
$(1,6)(2,3)(4,5)$ |
$0$ |
$0$ |
| $1$ |
$3$ |
$(1,5,2)(3,6,4)$ |
$2 \zeta_{3}$ |
$-2 \zeta_{3} - 2$ |
| $1$ |
$3$ |
$(1,2,5)(3,4,6)$ |
$-2 \zeta_{3} - 2$ |
$2 \zeta_{3}$ |
| $2$ |
$3$ |
$(1,5,2)$ |
$\zeta_{3} + 1$ |
$-\zeta_{3}$ |
| $2$ |
$3$ |
$(1,2,5)$ |
$-\zeta_{3}$ |
$\zeta_{3} + 1$ |
| $2$ |
$3$ |
$(1,2,5)(3,6,4)$ |
$-1$ |
$-1$ |
| $3$ |
$6$ |
$(1,3,5,6,2,4)$ |
$0$ |
$0$ |
| $3$ |
$6$ |
$(1,4,2,6,5,3)$ |
$0$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.