Properties

Label 2.2e2_3_1223.4t3.5c1
Dimension 2
Group $D_4$
Conductor $ 2^{2} \cdot 3 \cdot 1223 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$14676= 2^{2} \cdot 3 \cdot 1223 $
Artin number field: Splitting field of $f= x^{8} - 98 x^{6} + 3697 x^{4} - 48828 x^{2} + 419904 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd
Determinant: 1.2e2_3_1223.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 59 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 4 + 22\cdot 59 + 8\cdot 59^{2} + 20\cdot 59^{3} + 16\cdot 59^{4} + 39\cdot 59^{5} +O\left(59^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 6 + 54\cdot 59 + 44\cdot 59^{2} + 48\cdot 59^{3} + 14\cdot 59^{4} + 36\cdot 59^{5} +O\left(59^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 18 + 10\cdot 59 + 54\cdot 59^{2} + 59^{3} + 9\cdot 59^{4} + 40\cdot 59^{5} +O\left(59^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 28 + 27\cdot 59 + 48\cdot 59^{2} + 11\cdot 59^{3} + 40\cdot 59^{4} + 56\cdot 59^{5} +O\left(59^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 31 + 31\cdot 59 + 10\cdot 59^{2} + 47\cdot 59^{3} + 18\cdot 59^{4} + 2\cdot 59^{5} +O\left(59^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 41 + 48\cdot 59 + 4\cdot 59^{2} + 57\cdot 59^{3} + 49\cdot 59^{4} + 18\cdot 59^{5} +O\left(59^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 53 + 4\cdot 59 + 14\cdot 59^{2} + 10\cdot 59^{3} + 44\cdot 59^{4} + 22\cdot 59^{5} +O\left(59^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 55 + 36\cdot 59 + 50\cdot 59^{2} + 38\cdot 59^{3} + 42\cdot 59^{4} + 19\cdot 59^{5} +O\left(59^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2,3,5)(4,8,7,6)$
$(1,4)(2,6)(3,7)(5,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,3)(2,5)(4,7)(6,8)$$-2$
$2$$2$$(1,4)(2,6)(3,7)(5,8)$$0$
$2$$2$$(1,6)(2,7)(3,8)(4,5)$$0$
$2$$4$$(1,2,3,5)(4,8,7,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.