Properties

Label 2.2e2_3_11_59.4t3.5c1
Dimension 2
Group $D_{4}$
Conductor $ 2^{2} \cdot 3 \cdot 11 \cdot 59 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:$7788= 2^{2} \cdot 3 \cdot 11 \cdot 59 $
Artin number field: Splitting field of $f= x^{4} + 29 x^{2} + 48 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even
Determinant: 1.2e2_3_11_59.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 13 }$ to precision 8.
Roots:
$r_{ 1 }$ $=$ $ 1 + 2\cdot 13 + 11\cdot 13^{2} + 8\cdot 13^{3} + 6\cdot 13^{4} + 11\cdot 13^{5} + 12\cdot 13^{6} + 6\cdot 13^{7} +O\left(13^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 3 + 13 + 4\cdot 13^{2} + 13^{3} + 13^{4} + 12\cdot 13^{6} + 7\cdot 13^{7} +O\left(13^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 10 + 11\cdot 13 + 8\cdot 13^{2} + 11\cdot 13^{3} + 11\cdot 13^{4} + 12\cdot 13^{5} + 5\cdot 13^{7} +O\left(13^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 12 + 10\cdot 13 + 13^{2} + 4\cdot 13^{3} + 6\cdot 13^{4} + 13^{5} + 6\cdot 13^{7} +O\left(13^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2)(3,4)$
$(2,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,4)(2,3)$$-2$
$2$$2$$(1,2)(3,4)$$0$
$2$$2$$(1,4)$$0$
$2$$4$$(1,3,4,2)$$0$
The blue line marks the conjugacy class containing complex conjugation.