Properties

Label 2.2e2_3_11_59.4t3.12c1
Dimension 2
Group $D_4$
Conductor $ 2^{2} \cdot 3 \cdot 11 \cdot 59 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$7788= 2^{2} \cdot 3 \cdot 11 \cdot 59 $
Artin number field: Splitting field of $f= x^{8} + 46 x^{6} + 817 x^{4} - 1164 x^{2} + 20736 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even
Determinant: 1.2e2_3_11_59.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 83 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 3 + 78\cdot 83 + 19\cdot 83^{2} + 47\cdot 83^{3} + 83^{4} + 64\cdot 83^{5} +O\left(83^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 15 + 37\cdot 83 + 60\cdot 83^{2} + 67\cdot 83^{3} + 17\cdot 83^{4} + 80\cdot 83^{5} +O\left(83^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 23 + 24\cdot 83 + 67\cdot 83^{2} + 8\cdot 83^{3} + 64\cdot 83^{4} + 43\cdot 83^{5} +O\left(83^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 41 + 56\cdot 83 + 64\cdot 83^{2} + 40\cdot 83^{3} + 22\cdot 83^{5} +O\left(83^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 42 + 26\cdot 83 + 18\cdot 83^{2} + 42\cdot 83^{3} + 82\cdot 83^{4} + 60\cdot 83^{5} +O\left(83^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 60 + 58\cdot 83 + 15\cdot 83^{2} + 74\cdot 83^{3} + 18\cdot 83^{4} + 39\cdot 83^{5} +O\left(83^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 68 + 45\cdot 83 + 22\cdot 83^{2} + 15\cdot 83^{3} + 65\cdot 83^{4} + 2\cdot 83^{5} +O\left(83^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 80 + 4\cdot 83 + 63\cdot 83^{2} + 35\cdot 83^{3} + 81\cdot 83^{4} + 18\cdot 83^{5} +O\left(83^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2,3,5)(4,8,7,6)$
$(1,4)(2,6)(3,7)(5,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,3)(2,5)(4,7)(6,8)$$-2$
$2$$2$$(1,4)(2,6)(3,7)(5,8)$$0$
$2$$2$$(1,6)(2,7)(3,8)(4,5)$$0$
$2$$4$$(1,2,3,5)(4,8,7,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.