Properties

Label 2.2e2_3_1151.4t3.1
Dimension 2
Group $D_{4}$
Conductor $ 2^{2} \cdot 3 \cdot 1151 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:$13812= 2^{2} \cdot 3 \cdot 1151 $
Artin number field: Splitting field of $f= x^{4} - 5 x^{2} - 30 x - 74 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 37 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 32\cdot 37 + 11\cdot 37^{2} + 6\cdot 37^{3} + 22\cdot 37^{4} + 17\cdot 37^{5} +O\left(37^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 19 + 31\cdot 37 + 31\cdot 37^{2} + 15\cdot 37^{3} + 34\cdot 37^{4} + 20\cdot 37^{5} +O\left(37^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 22 + 19\cdot 37 + 21\cdot 37^{2} + 30\cdot 37^{3} + 28\cdot 37^{4} + 24\cdot 37^{5} +O\left(37^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 33 + 27\cdot 37 + 8\cdot 37^{2} + 21\cdot 37^{3} + 25\cdot 37^{4} + 10\cdot 37^{5} +O\left(37^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2)(3,4)$
$(2,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,3)(2,4)$ $-2$
$2$ $2$ $(1,2)(3,4)$ $0$
$2$ $2$ $(1,3)$ $0$
$2$ $4$ $(1,4,3,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.