Properties

Label 2.2e2_3_103.6t5.1
Dimension 2
Group $S_3\times C_3$
Conductor $ 2^{2} \cdot 3 \cdot 103 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$S_3\times C_3$
Conductor:$1236= 2^{2} \cdot 3 \cdot 103 $
Artin number field: Splitting field of $f= x^{6} + x^{4} - 12 x^{3} - 17 x^{2} + 12 x + 63 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $S_3\times C_3$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: $ x^{2} + 21 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ a + \left(5 a + 14\right)\cdot 23 + \left(2 a + 8\right)\cdot 23^{2} + \left(10 a + 11\right)\cdot 23^{3} + \left(8 a + 12\right)\cdot 23^{4} + \left(12 a + 15\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 22 a + 2 + 17 a\cdot 23 + \left(20 a + 8\right)\cdot 23^{2} + \left(12 a + 6\right)\cdot 23^{3} + \left(14 a + 19\right)\cdot 23^{4} + \left(10 a + 8\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 19 a + 11 + \left(17 a + 11\right)\cdot 23 + 17 a\cdot 23^{2} + \left(13 a + 22\right)\cdot 23^{3} + \left(4 a + 5\right)\cdot 23^{4} + \left(15 a + 11\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 11 a + 4 + \left(15 a + 9\right)\cdot 23 + \left(16 a + 19\right)\cdot 23^{2} + \left(12 a + 5\right)\cdot 23^{3} + \left(13 a + 19\right)\cdot 23^{4} + \left(8 a + 7\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 12 a + 3 + \left(7 a + 6\right)\cdot 23 + \left(6 a + 14\right)\cdot 23^{2} + \left(10 a + 14\right)\cdot 23^{3} + \left(9 a + 10\right)\cdot 23^{4} + \left(14 a + 11\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 4 a + 3 + \left(5 a + 5\right)\cdot 23 + \left(5 a + 18\right)\cdot 23^{2} + \left(9 a + 8\right)\cdot 23^{3} + \left(18 a + 1\right)\cdot 23^{4} + \left(7 a + 14\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,6)(2,4)(3,5)$
$(2,5,6)$
$(1,4,3)(2,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$3$ $2$ $(1,6)(2,4)(3,5)$ $0$ $0$
$1$ $3$ $(1,4,3)(2,5,6)$ $2 \zeta_{3}$ $-2 \zeta_{3} - 2$
$1$ $3$ $(1,3,4)(2,6,5)$ $-2 \zeta_{3} - 2$ $2 \zeta_{3}$
$2$ $3$ $(1,4,3)(2,6,5)$ $-1$ $-1$
$2$ $3$ $(2,5,6)$ $\zeta_{3} + 1$ $-\zeta_{3}$
$2$ $3$ $(2,6,5)$ $-\zeta_{3}$ $\zeta_{3} + 1$
$3$ $6$ $(1,2,4,5,3,6)$ $0$ $0$
$3$ $6$ $(1,6,3,5,4,2)$ $0$ $0$
The blue line marks the conjugacy class containing complex conjugation.