Properties

Label 2.2e2_389.3t2.1
Dimension 2
Group $S_3$
Conductor $ 2^{2} \cdot 389 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$S_3$
Conductor:$1556= 2^{2} \cdot 389 $
Artin number field: Splitting field of $f= x^{3} - x^{2} - 9 x + 11 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_3$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 11 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 5\cdot 11 + 9\cdot 11^{2} + 4\cdot 11^{3} + 4\cdot 11^{4} +O\left(11^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 5 + 5\cdot 11 + 9\cdot 11^{2} + 9\cdot 11^{3} + 8\cdot 11^{4} +O\left(11^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 7 + 3\cdot 11^{2} + 7\cdot 11^{3} + 8\cdot 11^{4} +O\left(11^{ 5 }\right)$

Generators of the action on the roots $ r_{ 1 }, r_{ 2 }, r_{ 3 } $

Cycle notation
$(1,2,3)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $ r_{ 1 }, r_{ 2 }, r_{ 3 } $ Character values
$c1$
$1$ $1$ $()$ $2$
$3$ $2$ $(1,2)$ $0$
$2$ $3$ $(1,2,3)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.