Properties

Label 2.2e2_37_16361e2.6t3.2c1
Dimension 2
Group $D_{6}$
Conductor $ 2^{2} \cdot 37 \cdot 16361^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:$39616983508= 2^{2} \cdot 37 \cdot 16361^{2} $
Artin number field: Splitting field of $f= x^{6} - x^{5} - 12277 x^{4} + 8185 x^{3} + 50188400 x^{2} - 16728104 x - 68317593122 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{6}$
Parity: Even
Determinant: 1.37.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 16.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: $ x^{2} + 21 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 2 a + \left(6 a + 13\right)\cdot 23 + \left(18 a + 13\right)\cdot 23^{2} + 13\cdot 23^{3} + \left(19 a + 7\right)\cdot 23^{4} + \left(a + 8\right)\cdot 23^{5} + \left(12 a + 21\right)\cdot 23^{6} + \left(19 a + 8\right)\cdot 23^{7} + \left(17 a + 12\right)\cdot 23^{8} + \left(3 a + 1\right)\cdot 23^{9} + \left(10 a + 14\right)\cdot 23^{10} + \left(4 a + 11\right)\cdot 23^{11} + \left(22 a + 4\right)\cdot 23^{12} + \left(6 a + 10\right)\cdot 23^{13} + \left(9 a + 18\right)\cdot 23^{14} + \left(11 a + 22\right)\cdot 23^{15} +O\left(23^{ 16 }\right)$
$r_{ 2 }$ $=$ $ 2 a + 10 + \left(6 a + 15\right)\cdot 23 + \left(18 a + 20\right)\cdot 23^{2} + 23^{3} + \left(19 a + 12\right)\cdot 23^{4} + \left(a + 6\right)\cdot 23^{5} + \left(12 a + 18\right)\cdot 23^{6} + \left(19 a + 18\right)\cdot 23^{7} + \left(17 a + 21\right)\cdot 23^{8} + \left(3 a + 4\right)\cdot 23^{9} + \left(10 a + 14\right)\cdot 23^{10} + \left(4 a + 4\right)\cdot 23^{11} + \left(22 a + 18\right)\cdot 23^{12} + \left(6 a + 8\right)\cdot 23^{13} + \left(9 a + 8\right)\cdot 23^{14} + \left(11 a + 5\right)\cdot 23^{15} +O\left(23^{ 16 }\right)$
$r_{ 3 }$ $=$ $ 21 a + 4 + 16 a\cdot 23 + \left(4 a + 21\right)\cdot 23^{2} + \left(22 a + 19\right)\cdot 23^{3} + \left(3 a + 21\right)\cdot 23^{4} + \left(21 a + 15\right)\cdot 23^{5} + \left(10 a + 20\right)\cdot 23^{6} + \left(3 a + 12\right)\cdot 23^{7} + \left(5 a + 5\right)\cdot 23^{8} + \left(19 a + 14\right)\cdot 23^{9} + \left(12 a + 7\right)\cdot 23^{10} + \left(18 a + 10\right)\cdot 23^{11} + 21\cdot 23^{12} + \left(16 a + 1\right)\cdot 23^{13} + \left(13 a + 7\right)\cdot 23^{14} + \left(11 a + 13\right)\cdot 23^{15} +O\left(23^{ 16 }\right)$
$r_{ 4 }$ $=$ $ 16 + 17\cdot 23 + 7\cdot 23^{3} + 21\cdot 23^{4} + 12\cdot 23^{5} + 8\cdot 23^{6} + 9\cdot 23^{7} + 2\cdot 23^{8} + 2\cdot 23^{9} + 23^{10} + 11\cdot 23^{12} + 23^{13} + 23^{14} + 13\cdot 23^{15} +O\left(23^{ 16 }\right)$
$r_{ 5 }$ $=$ $ 21 a + 14 + \left(16 a + 2\right)\cdot 23 + \left(4 a + 5\right)\cdot 23^{2} + \left(22 a + 8\right)\cdot 23^{3} + \left(3 a + 3\right)\cdot 23^{4} + \left(21 a + 14\right)\cdot 23^{5} + \left(10 a + 17\right)\cdot 23^{6} + \left(3 a + 22\right)\cdot 23^{7} + \left(5 a + 14\right)\cdot 23^{8} + \left(19 a + 17\right)\cdot 23^{9} + \left(12 a + 7\right)\cdot 23^{10} + \left(18 a + 3\right)\cdot 23^{11} + 12\cdot 23^{12} + 16 a\cdot 23^{13} + \left(13 a + 20\right)\cdot 23^{14} + \left(11 a + 18\right)\cdot 23^{15} +O\left(23^{ 16 }\right)$
$r_{ 6 }$ $=$ $ 3 + 20\cdot 23 + 7\cdot 23^{2} + 18\cdot 23^{3} + 2\cdot 23^{4} + 11\cdot 23^{5} + 5\cdot 23^{6} + 19\cdot 23^{7} + 11\cdot 23^{8} + 5\cdot 23^{9} + 23^{10} + 16\cdot 23^{11} + 23^{12} + 14\cdot 23^{14} + 18\cdot 23^{15} +O\left(23^{ 16 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(3,5)(4,6)$
$(1,3)(2,5)$
$(3,4)(5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,2)(3,5)(4,6)$$-2$
$3$$2$$(1,3)(2,5)$$0$
$3$$2$$(1,5)(2,3)(4,6)$$0$
$2$$3$$(1,4,3)(2,6,5)$$-1$
$2$$6$$(1,6,3,2,4,5)$$1$
The blue line marks the conjugacy class containing complex conjugation.