Properties

Label 2.2e2_379.9t3.1c2
Dimension 2
Group $D_{9}$
Conductor $ 2^{2} \cdot 379 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{9}$
Conductor:$1516= 2^{2} \cdot 379 $
Artin number field: Splitting field of $f= x^{9} - 4 x^{8} + 4 x^{7} + 15 x^{6} - 32 x^{5} - 46 x^{4} + 163 x^{3} - 108 x^{2} - 18 x + 27 $ over $\Q$
Size of Galois orbit: 3
Smallest containing permutation representation: $D_{9}$
Parity: Odd
Determinant: 1.379.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 97 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 97 }$: $ x^{3} + 9 x + 92 $
Roots:
$r_{ 1 }$ $=$ $ 27 a^{2} + 36 a + 47 + \left(65 a^{2} + 95 a + 71\right)\cdot 97 + \left(61 a^{2} + 3 a + 32\right)\cdot 97^{2} + \left(29 a^{2} + 14 a + 27\right)\cdot 97^{3} + \left(37 a^{2} + 2 a + 40\right)\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 6 a^{2} + 5 a + 73 + \left(95 a^{2} + 77 a + 87\right)\cdot 97 + \left(79 a^{2} + 15 a\right)\cdot 97^{2} + \left(64 a^{2} + 43 a + 59\right)\cdot 97^{3} + \left(20 a^{2} + 75 a\right)\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 94 a^{2} + 65 a + 19 + \left(96 a^{2} + 9 a + 2\right)\cdot 97 + \left(37 a^{2} + 77 a + 40\right)\cdot 97^{2} + \left(34 a^{2} + a + 70\right)\cdot 97^{3} + \left(89 a^{2} + 2 a + 24\right)\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 65 a^{2} + 67 a + 81 + \left(55 a^{2} + 26 a + 13\right)\cdot 97 + \left(a^{2} + 77 a + 60\right)\cdot 97^{2} + \left(5 a^{2} + 2 a + 73\right)\cdot 97^{3} + \left(26 a^{2} + 23 a + 69\right)\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 78 a^{2} + 45 a + 30 + \left(68 a^{2} + 7 a + 19\right)\cdot 97 + \left(38 a^{2} + 70 a + 46\right)\cdot 97^{2} + \left(43 a^{2} + 65 a + 29\right)\cdot 97^{3} + \left(9 a^{2} + 56 a + 40\right)\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 27 a^{2} + 37 a + 15 + \left(53 a^{2} + 23 a + 23\right)\cdot 97 + \left(68 a^{2} + 18 a + 31\right)\cdot 97^{2} + \left(a^{2} + 57 a + 70\right)\cdot 97^{3} + \left(42 a^{2} + 33 a + 41\right)\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 89 a^{2} + 15 a + 96 + \left(71 a^{2} + 66 a + 37\right)\cdot 97 + \left(86 a^{2} + 8 a + 43\right)\cdot 97^{2} + \left(51 a^{2} + 71 a + 80\right)\cdot 97^{3} + \left(45 a^{2} + 6 a + 62\right)\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 94 a^{2} + 27 a + 19 + \left(a^{2} + 10 a + 14\right)\cdot 97 + \left(76 a^{2} + 4 a + 74\right)\cdot 97^{2} + \left(94 a^{2} + 52 a + 44\right)\cdot 97^{3} + \left(83 a^{2} + 19 a + 89\right)\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 9 }$ $=$ $ 5 a^{2} + 91 a + 12 + \left(73 a^{2} + 71 a + 21\right)\cdot 97 + \left(33 a^{2} + 15 a + 59\right)\cdot 97^{2} + \left(62 a^{2} + 80 a + 29\right)\cdot 97^{3} + \left(33 a^{2} + 71 a + 18\right)\cdot 97^{4} +O\left(97^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,4)(2,7)(3,6)(5,8)$
$(1,6,2,9,7,3,4,5,8)$
$(1,9,4)(2,3,8)(5,6,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character value
$1$$1$$()$$2$
$9$$2$$(1,4)(2,7)(3,6)(5,8)$$0$
$2$$3$$(1,9,4)(2,3,8)(5,6,7)$$-1$
$2$$9$$(1,6,2,9,7,3,4,5,8)$$\zeta_{9}^{5} + \zeta_{9}^{4}$
$2$$9$$(1,2,7,4,8,6,9,3,5)$$-\zeta_{9}^{5} - \zeta_{9}^{2} + \zeta_{9}$
$2$$9$$(1,7,8,9,5,2,4,6,3)$$-\zeta_{9}^{4} + \zeta_{9}^{2} - \zeta_{9}$
The blue line marks the conjugacy class containing complex conjugation.