Properties

Label 2.2e2_331.9t3.1c2
Dimension 2
Group $D_{9}$
Conductor $ 2^{2} \cdot 331 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{9}$
Conductor:$1324= 2^{2} \cdot 331 $
Artin number field: Splitting field of $f= x^{9} - 3 x^{8} + 3 x^{7} - 3 x^{6} + 22 x^{5} + 6 x^{4} - 48 x^{3} + 12 x^{2} + 40 x - 12 $ over $\Q$
Size of Galois orbit: 3
Smallest containing permutation representation: $D_{9}$
Parity: Odd
Determinant: 1.331.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 83 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 83 }$: $ x^{3} + 3 x + 81 $
Roots:
$r_{ 1 }$ $=$ $ 56 a^{2} + 14 a + 81 + \left(60 a^{2} + 24 a + 79\right)\cdot 83 + \left(67 a^{2} + 72 a + 44\right)\cdot 83^{2} + \left(80 a^{2} + 67 a + 58\right)\cdot 83^{3} + \left(28 a^{2} + 34 a + 20\right)\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 30 a^{2} + 7 a + 29 + \left(76 a^{2} + 33 a + 28\right)\cdot 83 + \left(32 a^{2} + 58\right)\cdot 83^{2} + \left(29 a^{2} + 25 a + 38\right)\cdot 83^{3} + \left(60 a^{2} + a\right)\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 18 a^{2} + 60 a + 33 + \left(15 a^{2} + 79 a + 62\right)\cdot 83 + \left(28 a^{2} + 60 a + 32\right)\cdot 83^{2} + \left(70 a^{2} + 72 a + 31\right)\cdot 83^{3} + \left(42 a^{2} + 65 a + 20\right)\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 57 a^{2} + 34 a + 66 + \left(34 a^{2} + 47 a + 78\right)\cdot 83 + \left(48 a^{2} + 15 a + 44\right)\cdot 83^{2} + \left(6 a^{2} + 68 a + 59\right)\cdot 83^{3} + \left(20 a^{2} + 40 a + 59\right)\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 16 a^{2} + 52 a + 29 + \left(23 a^{2} + 19 a + 78\right)\cdot 83 + \left(10 a^{2} + 62 a + 79\right)\cdot 83^{2} + \left(72 a^{2} + 68 a + 34\right)\cdot 83^{3} + \left(78 a^{2} + 40 a + 9\right)\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 6 }$ $=$ $ a^{2} + 81 a + 37 + \left(51 a^{2} + 45 a + 28\right)\cdot 83 + \left(75 a^{2} + 81 a + 16\right)\cdot 83^{2} + \left(73 a^{2} + a + 28\right)\cdot 83^{3} + \left(45 a^{2} + 33 a + 28\right)\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 80 a^{2} + 62 a + 46 + \left(28 a^{2} + 25 a + 16\right)\cdot 83 + \left(65 a^{2} + 10 a + 40\right)\cdot 83^{2} + \left(55 a^{2} + 73 a + 8\right)\cdot 83^{3} + \left(76 a^{2} + 46 a + 33\right)\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 25 a^{2} + 51 a + 2 + \left(80 a^{2} + 72 a + 4\right)\cdot 83 + \left(41 a^{2} + 68 a + 32\right)\cdot 83^{2} + \left(2 a^{2} + 12 a + 51\right)\cdot 83^{3} + \left(17 a^{2} + 9 a + 53\right)\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 9 }$ $=$ $ 49 a^{2} + 54 a + 12 + \left(44 a^{2} + 66 a + 38\right)\cdot 83 + \left(44 a^{2} + 42 a + 65\right)\cdot 83^{2} + \left(23 a^{2} + 24 a + 20\right)\cdot 83^{3} + \left(44 a^{2} + 59 a + 23\right)\cdot 83^{4} +O\left(83^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,3,4,7,9,6,2,5,8)$
$(1,7,2)(3,9,5)(4,6,8)$
$(1,5)(2,3)(4,6)(7,9)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character value
$1$$1$$()$$2$
$9$$2$$(1,5)(2,3)(4,6)(7,9)$$0$
$2$$3$$(1,7,2)(3,9,5)(4,6,8)$$-1$
$2$$9$$(1,3,4,7,9,6,2,5,8)$$\zeta_{9}^{5} + \zeta_{9}^{4}$
$2$$9$$(1,4,9,2,8,3,7,6,5)$$-\zeta_{9}^{5} - \zeta_{9}^{2} + \zeta_{9}$
$2$$9$$(1,9,8,7,5,4,2,3,6)$$-\zeta_{9}^{4} + \zeta_{9}^{2} - \zeta_{9}$
The blue line marks the conjugacy class containing complex conjugation.