Properties

Label 2.2e2_31e2.4t3.3
Dimension 2
Group $D_4$
Conductor $ 2^{2} \cdot 31^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$3844= 2^{2} \cdot 31^{2} $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} + 8 x^{6} - 10 x^{5} - 7 x^{4} + 26 x^{3} + 2 x^{2} - 16 x + 64 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 109 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 6 + 73\cdot 109 + 20\cdot 109^{2} + 49\cdot 109^{3} + 23\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 20 + 87\cdot 109 + 3\cdot 109^{2} + 27\cdot 109^{3} + 26\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 28 + 92\cdot 109 + 73\cdot 109^{2} + 28\cdot 109^{3} + 67\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 53 + 34\cdot 109 + 98\cdot 109^{2} + 104\cdot 109^{3} + 7\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 57 + 74\cdot 109 + 10\cdot 109^{2} + 4\cdot 109^{3} + 101\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 82 + 16\cdot 109 + 35\cdot 109^{2} + 80\cdot 109^{3} + 41\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 90 + 21\cdot 109 + 105\cdot 109^{2} + 81\cdot 109^{3} + 82\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 104 + 35\cdot 109 + 88\cdot 109^{2} + 59\cdot 109^{3} + 85\cdot 109^{4} +O\left(109^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,5)(4,6)(7,8)$
$(1,4,3,7)(2,8,5,6)$
$(1,3)(2,5)(4,7)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,3)(2,5)(4,7)(6,8)$ $-2$
$2$ $2$ $(1,2)(3,5)(4,6)(7,8)$ $0$
$2$ $2$ $(1,8)(2,4)(3,6)(5,7)$ $0$
$2$ $4$ $(1,4,3,7)(2,8,5,6)$ $0$
The blue line marks the conjugacy class containing complex conjugation.