Properties

Label 2.2e2_29_73.24t22.4
Dimension 2
Group $\textrm{GL(2,3)}$
Conductor $ 2^{2} \cdot 29 \cdot 73 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$\textrm{GL(2,3)}$
Conductor:$8468= 2^{2} \cdot 29 \cdot 73 $
Artin number field: Splitting field of $f= x^{8} - x^{7} + 5 x^{6} - 7 x^{5} + 30 x^{4} - 28 x^{3} + 80 x^{2} - 64 x + 256 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: 24T22
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 53 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 53 }$: $ x^{2} + 49 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 28 + 20\cdot 53 + 21\cdot 53^{2} + 52\cdot 53^{3} + 41\cdot 53^{4} + 5\cdot 53^{5} +O\left(53^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 21 a + 46 + \left(6 a + 31\right)\cdot 53 + \left(42 a + 37\right)\cdot 53^{2} + \left(27 a + 12\right)\cdot 53^{3} + \left(15 a + 30\right)\cdot 53^{4} + \left(22 a + 28\right)\cdot 53^{5} +O\left(53^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 40 a + 43 + \left(34 a + 44\right)\cdot 53 + \left(52 a + 40\right)\cdot 53^{2} + \left(5 a + 20\right)\cdot 53^{3} + \left(18 a + 10\right)\cdot 53^{4} + \left(7 a + 9\right)\cdot 53^{5} +O\left(53^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 32 a + 24 + \left(46 a + 36\right)\cdot 53 + \left(10 a + 40\right)\cdot 53^{2} + \left(25 a + 28\right)\cdot 53^{3} + \left(37 a + 11\right)\cdot 53^{4} + \left(30 a + 49\right)\cdot 53^{5} +O\left(53^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 50 a + 1 + \left(35 a + 21\right)\cdot 53 + \left(46 a + 23\right)\cdot 53^{2} + \left(5 a + 45\right)\cdot 53^{3} + \left(22 a + 42\right)\cdot 53^{4} + \left(5 a + 52\right)\cdot 53^{5} +O\left(53^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 13 a + 44 + \left(18 a + 37\right)\cdot 53 + 4\cdot 53^{2} + \left(47 a + 45\right)\cdot 53^{3} + \left(34 a + 23\right)\cdot 53^{4} + \left(45 a + 20\right)\cdot 53^{5} +O\left(53^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 3 a + 42 + \left(17 a + 8\right)\cdot 53 + \left(6 a + 15\right)\cdot 53^{2} + \left(47 a + 22\right)\cdot 53^{3} + \left(30 a + 19\right)\cdot 53^{4} + \left(47 a + 52\right)\cdot 53^{5} +O\left(53^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 38 + 10\cdot 53 + 28\cdot 53^{2} + 37\cdot 53^{3} + 31\cdot 53^{4} + 46\cdot 53^{5} +O\left(53^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,7,8,2)(3,5,6,4)$
$(1,3)(4,5)(6,8)$
$(1,5,8,4)(2,6,7,3)$
$(1,5,6)(3,8,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-2$ $-2$
$12$ $2$ $(1,3)(4,5)(6,8)$ $0$ $0$
$8$ $3$ $(1,4,2)(5,7,8)$ $-1$ $-1$
$6$ $4$ $(1,7,8,2)(3,5,6,4)$ $0$ $0$
$8$ $6$ $(1,7,4,8,2,5)(3,6)$ $1$ $1$
$6$ $8$ $(1,5,3,7,8,4,6,2)$ $-\zeta_{8}^{3} - \zeta_{8}$ $\zeta_{8}^{3} + \zeta_{8}$
$6$ $8$ $(1,4,3,2,8,5,6,7)$ $\zeta_{8}^{3} + \zeta_{8}$ $-\zeta_{8}^{3} - \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.