Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$: $ x^{2} + 16 x + 3 $
Roots:
$r_{ 1 }$ |
$=$ |
$ 15 a + 6 + \left(12 a + 8\right)\cdot 17 + \left(16 a + 10\right)\cdot 17^{2} + \left(6 a + 13\right)\cdot 17^{3} + \left(16 a + 9\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$ |
$r_{ 2 }$ |
$=$ |
$ 2 a + 4 + \left(4 a + 6\right)\cdot 17 + 14\cdot 17^{2} + \left(10 a + 3\right)\cdot 17^{3} + 2\cdot 17^{4} +O\left(17^{ 5 }\right)$ |
$r_{ 3 }$ |
$=$ |
$ 8 a + 10 + \left(3 a + 5\right)\cdot 17 + 12 a\cdot 17^{2} + \left(6 a + 15\right)\cdot 17^{3} + \left(a + 3\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$ |
$r_{ 4 }$ |
$=$ |
$ 7 + 2\cdot 17 + 9\cdot 17^{2} + 16\cdot 17^{3} + 4\cdot 17^{4} +O\left(17^{ 5 }\right)$ |
$r_{ 5 }$ |
$=$ |
$ 9 a + 1 + \left(13 a + 1\right)\cdot 17 + \left(4 a + 9\right)\cdot 17^{2} + \left(10 a + 9\right)\cdot 17^{3} + \left(15 a + 15\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$ |
$r_{ 6 }$ |
$=$ |
$ 6 + 10\cdot 17 + 7\cdot 17^{2} + 9\cdot 17^{3} + 14\cdot 17^{4} +O\left(17^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
Cycle notation |
$(1,3)(2,5)(4,6)$ |
$(1,2)(3,5)$ |
$(2,4)(5,6)$ |
Character values on conjugacy classes
Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character value |
$1$ | $1$ | $()$ | $2$ |
$1$ | $2$ | $(1,3)(2,5)(4,6)$ | $-2$ |
$3$ | $2$ | $(1,2)(3,5)$ | $0$ |
$3$ | $2$ | $(1,5)(2,3)(4,6)$ | $0$ |
$2$ | $3$ | $(1,4,2)(3,6,5)$ | $-1$ |
$2$ | $6$ | $(1,6,2,3,4,5)$ | $1$ |
The blue line marks the conjugacy class containing complex conjugation.