Properties

Label 2.2e2_283.9t3.1c1
Dimension 2
Group $D_{9}$
Conductor $ 2^{2} \cdot 283 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{9}$
Conductor:$1132= 2^{2} \cdot 283 $
Artin number field: Splitting field of $f= x^{9} - 2 x^{8} + x^{7} + 2 x^{6} - 17 x^{5} + 16 x^{4} - 21 x^{3} + 14 x^{2} + 116 x + 62 $ over $\Q$
Size of Galois orbit: 3
Smallest containing permutation representation: $D_{9}$
Parity: Odd
Determinant: 1.283.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 71 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 71 }$: $ x^{3} + 4 x + 64 $
Roots:
$r_{ 1 }$ $=$ $ 37 a^{2} + 37 a + 6 + \left(57 a^{2} + 48 a + 16\right)\cdot 71 + \left(11 a^{2} + 4 a + 2\right)\cdot 71^{2} + \left(27 a^{2} + 22 a + 28\right)\cdot 71^{3} + \left(61 a^{2} + 66 a + 49\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 62 a^{2} + 53 a + 51 + \left(53 a^{2} + 68 a + 59\right)\cdot 71 + \left(57 a^{2} + 17 a + 27\right)\cdot 71^{2} + \left(15 a^{2} + 23 a + 17\right)\cdot 71^{3} + \left(20 a^{2} + 12 a + 66\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 39 a^{2} + 69 a + 35 + \left(a^{2} + 33 a + 32\right)\cdot 71 + \left(58 a^{2} + 4 a + 54\right)\cdot 71^{2} + \left(40 a^{2} + 18 a + 40\right)\cdot 71^{3} + \left(24 a^{2} + 59 a + 69\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 58 a^{2} + 4 a + 64 + \left(31 a^{2} + 42 a\right)\cdot 71 + \left(a^{2} + 62 a + 67\right)\cdot 71^{2} + \left(21 a^{2} + 25 a + 54\right)\cdot 71^{3} + \left(29 a + 36\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 60 a^{2} + 70 a + 60 + \left(66 a^{2} + 20 a + 20\right)\cdot 71 + \left(53 a^{2} + 56 a + 15\right)\cdot 71^{2} + \left(16 a^{2} + 70 a + 19\right)\cdot 71^{3} + \left(4 a^{2} + 5 a + 42\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 66 a^{2} + 36 a + 36 + \left(11 a^{2} + 59 a + 36\right)\cdot 71 + \left(a^{2} + 61 a + 68\right)\cdot 71^{2} + \left(3 a^{2} + 30 a + 10\right)\cdot 71^{3} + \left(56 a^{2} + 16 a + 35\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 22 a^{2} + 14 a + 39 + \left(56 a^{2} + 31 a + 42\right)\cdot 71 + \left(11 a^{2} + 61 a + 23\right)\cdot 71^{2} + \left(34 a^{2} + 21 a + 66\right)\cdot 71^{3} + \left(50 a^{2} + 29 a + 4\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 45 a^{2} + 28 a + 20 + \left(32 a^{2} + 43 a + 24\right)\cdot 71 + \left(29 a^{2} + 23 a + 68\right)\cdot 71^{2} + \left(58 a^{2} + 3 a + 11\right)\cdot 71^{3} + \left(47 a^{2} + 29 a + 40\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 9 }$ $=$ $ 37 a^{2} + 44 a + 46 + \left(42 a^{2} + 6 a + 50\right)\cdot 71 + \left(58 a^{2} + 62 a + 27\right)\cdot 71^{2} + \left(66 a^{2} + 67 a + 34\right)\cdot 71^{3} + \left(18 a^{2} + 35 a + 10\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,9,7,3,8,4,6,5,2)$
$(1,3)(2,8)(4,5)(7,9)$
$(1,3,6)(2,7,4)(5,9,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character value
$1$$1$$()$$2$
$9$$2$$(1,3)(2,8)(4,5)(7,9)$$0$
$2$$3$$(1,3,6)(2,7,4)(5,9,8)$$-1$
$2$$9$$(1,9,7,3,8,4,6,5,2)$$-\zeta_{9}^{4} + \zeta_{9}^{2} - \zeta_{9}$
$2$$9$$(1,7,8,6,2,9,3,4,5)$$\zeta_{9}^{5} + \zeta_{9}^{4}$
$2$$9$$(1,8,2,3,5,7,6,9,4)$$-\zeta_{9}^{5} - \zeta_{9}^{2} + \zeta_{9}$
The blue line marks the conjugacy class containing complex conjugation.