Properties

Label 2.2e2_23e2_29.6t3.2
Dimension 2
Group $D_{6}$
Conductor $ 2^{2} \cdot 23^{2} \cdot 29 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:$61364= 2^{2} \cdot 23^{2} \cdot 29 $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 17 x^{4} - 7 x^{3} + 100 x^{2} - 106 x + 232 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{6}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: $ x^{2} + 38 x + 6 $
Roots:
$r_{ 1 }$ $=$ $ 20 a + 4 + \left(11 a + 21\right)\cdot 41 + \left(37 a + 14\right)\cdot 41^{2} + 33\cdot 41^{3} + \left(2 a + 1\right)\cdot 41^{4} + \left(27 a + 7\right)\cdot 41^{5} + \left(38 a + 24\right)\cdot 41^{6} +O\left(41^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 21 a + 33 + 29 a\cdot 41 + \left(3 a + 29\right)\cdot 41^{2} + \left(40 a + 23\right)\cdot 41^{3} + \left(38 a + 5\right)\cdot 41^{4} + \left(13 a + 21\right)\cdot 41^{5} + \left(2 a + 5\right)\cdot 41^{6} +O\left(41^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 30 + 41 + 16\cdot 41^{2} + 37\cdot 41^{3} + 32\cdot 41^{4} + 19\cdot 41^{6} +O\left(41^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 20 + 36\cdot 41 + 19\cdot 41^{2} + 12\cdot 41^{3} + 34\cdot 41^{4} + 24\cdot 41^{5} + 3\cdot 41^{6} +O\left(41^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 20 a + 14 + \left(11 a + 27\right)\cdot 41 + \left(37 a + 10\right)\cdot 41^{2} + 17\cdot 41^{3} + 2 a\cdot 41^{4} + \left(27 a + 24\right)\cdot 41^{5} + \left(38 a + 39\right)\cdot 41^{6} +O\left(41^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 21 a + 23 + \left(29 a + 35\right)\cdot 41 + \left(3 a + 32\right)\cdot 41^{2} + \left(40 a + 39\right)\cdot 41^{3} + \left(38 a + 6\right)\cdot 41^{4} + \left(13 a + 4\right)\cdot 41^{5} + \left(2 a + 31\right)\cdot 41^{6} +O\left(41^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(3,4)(5,6)$
$(2,3)(4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,5)(2,6)(3,4)$ $-2$
$3$ $2$ $(1,2)(3,4)(5,6)$ $0$
$3$ $2$ $(1,4)(3,5)$ $0$
$2$ $3$ $(1,6,4)(2,3,5)$ $-1$
$2$ $6$ $(1,3,6,5,4,2)$ $1$
The blue line marks the conjugacy class containing complex conjugation.