Properties

Label 2.2e2_233.4t3.3
Dimension 2
Group $D_4$
Conductor $ 2^{2} \cdot 233 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$932= 2^{2} \cdot 233 $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} + 8 x^{6} + 6 x^{5} + 117 x^{4} - 254 x^{3} + 98 x^{2} - 644 x + 2116 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 89 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 6 + 61\cdot 89 + 7\cdot 89^{2} + 9\cdot 89^{3} + 24\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 15 + 11\cdot 89 + 66\cdot 89^{2} + 45\cdot 89^{3} + 73\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 20 + 32\cdot 89 + 66\cdot 89^{2} + 14\cdot 89^{3} + 70\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 24 + 43\cdot 89 + 8\cdot 89^{2} + 6\cdot 89^{3} + 21\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 29 + 71\cdot 89 + 35\cdot 89^{2} + 51\cdot 89^{3} + 30\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 32 + 2\cdot 89 + 37\cdot 89^{2} + 22\cdot 89^{3} + 13\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 63 + 68\cdot 89 + 58\cdot 89^{2} + 23\cdot 89^{3} + 78\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 82 + 65\cdot 89 + 75\cdot 89^{2} + 4\cdot 89^{3} + 45\cdot 89^{4} +O\left(89^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,4,5,6)(2,8,3,7)$
$(1,2)(3,5)(4,7)(6,8)$
$(1,3)(2,5)(4,8)(6,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,5)(2,3)(4,6)(7,8)$ $-2$
$2$ $2$ $(1,2)(3,5)(4,7)(6,8)$ $0$
$2$ $2$ $(1,8)(2,4)(3,6)(5,7)$ $0$
$2$ $4$ $(1,4,5,6)(2,8,3,7)$ $0$
The blue line marks the conjugacy class containing complex conjugation.