Properties

Label 2.2e2_211.9t3.1
Dimension 2
Group $D_{9}$
Conductor $ 2^{2} \cdot 211 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{9}$
Conductor:$844= 2^{2} \cdot 211 $
Artin number field: Splitting field of $f= x^{9} - 4 x^{8} + 9 x^{7} - 22 x^{6} + 33 x^{5} - 46 x^{4} + 51 x^{3} - 46 x^{2} + 26 x - 6 $ over $\Q$
Size of Galois orbit: 3
Smallest containing permutation representation: $D_{9}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 53 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 53 }$: $ x^{3} + 3 x + 51 $
Roots:
$r_{ 1 }$ $=$ $ 23 a^{2} + 41 a + 13 + \left(48 a^{2} + 47 a + 44\right)\cdot 53 + \left(37 a^{2} + 47 a + 28\right)\cdot 53^{2} + \left(20 a^{2} + 51 a + 42\right)\cdot 53^{3} + \left(34 a^{2} + 27 a + 38\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 18 a^{2} + 41 a + 31 + \left(11 a^{2} + 47 a + 39\right)\cdot 53 + \left(40 a + 13\right)\cdot 53^{2} + \left(5 a^{2} + 29 a + 29\right)\cdot 53^{3} + \left(38 a^{2} + 2 a + 7\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 7 a^{2} + 7 a + 34 + \left(48 a^{2} + 42 a + 43\right)\cdot 53 + \left(44 a^{2} + 23 a + 42\right)\cdot 53^{2} + \left(37 a^{2} + 30 a + 23\right)\cdot 53^{3} + \left(25 a^{2} + 39 a + 21\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 41 a^{2} + 50 a + 33 + \left(36 a^{2} + 10 a + 38\right)\cdot 53 + \left(31 a^{2} + 38 a + 8\right)\cdot 53^{2} + \left(12 a^{2} + 25 a + 40\right)\cdot 53^{3} + \left(a^{2} + 2 a + 12\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 2 a^{2} + 17 a + 8 + \left(24 a^{2} + 42 a + 13\right)\cdot 53 + \left(30 a^{2} + 25 a + 6\right)\cdot 53^{2} + \left(10 a^{2} + 38 a + 36\right)\cdot 53^{3} + \left(6 a^{2} + 25 a + 22\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 10 a^{2} + 39 a + 24 + \left(45 a^{2} + 52 a + 2\right)\cdot 53 + \left(43 a^{2} + 41 a + 33\right)\cdot 53^{2} + \left(29 a^{2} + 41 a + 21\right)\cdot 53^{3} + \left(45 a^{2} + 24 a + 48\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 22 a^{2} + 21 a + 39 + \left(10 a^{2} + 52 a + 37\right)\cdot 53 + \left(29 a^{2} + 31 a + 18\right)\cdot 53^{2} + \left(3 a^{2} + 13 a + 26\right)\cdot 53^{3} + \left(2 a^{2} + 32 a + 41\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 23 a^{2} + 5 a + 13 + \left(9 a^{2} + 16 a + 19\right)\cdot 53 + \left(23 a^{2} + 34 a + 52\right)\cdot 53^{2} + \left(47 a^{2} + 23 a + 42\right)\cdot 53^{3} + \left(45 a^{2} + 38 a + 8\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 9 }$ $=$ $ 13 a^{2} + 44 a + 21 + \left(31 a^{2} + 5 a + 26\right)\cdot 53 + \left(23 a^{2} + 33 a + 7\right)\cdot 53^{2} + \left(44 a^{2} + 9 a + 2\right)\cdot 53^{3} + \left(12 a^{2} + 18 a + 10\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,5)(2,9)(3,4)(6,8)$
$(1,2,6,8,9,5,3,7,4)$
$(1,8,3)(2,9,7)(4,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character values
$c1$ $c2$ $c3$
$1$ $1$ $()$ $2$ $2$ $2$
$9$ $2$ $(1,5)(2,9)(3,4)(6,8)$ $0$ $0$ $0$
$2$ $3$ $(1,8,3)(2,9,7)(4,6,5)$ $-1$ $-1$ $-1$
$2$ $9$ $(1,2,6,8,9,5,3,7,4)$ $-\zeta_{9}^{4} + \zeta_{9}^{2} - \zeta_{9}$ $\zeta_{9}^{5} + \zeta_{9}^{4}$ $-\zeta_{9}^{5} - \zeta_{9}^{2} + \zeta_{9}$
$2$ $9$ $(1,6,9,3,4,2,8,5,7)$ $\zeta_{9}^{5} + \zeta_{9}^{4}$ $-\zeta_{9}^{5} - \zeta_{9}^{2} + \zeta_{9}$ $-\zeta_{9}^{4} + \zeta_{9}^{2} - \zeta_{9}$
$2$ $9$ $(1,9,4,8,7,6,3,2,5)$ $-\zeta_{9}^{5} - \zeta_{9}^{2} + \zeta_{9}$ $-\zeta_{9}^{4} + \zeta_{9}^{2} - \zeta_{9}$ $\zeta_{9}^{5} + \zeta_{9}^{4}$
The blue line marks the conjugacy class containing complex conjugation.