Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{2} + 29 x + 3 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 28 a + 3 + \left(2 a + 8\right)\cdot 31 + \left(10 a + 20\right)\cdot 31^{2} + \left(29 a + 13\right)\cdot 31^{3} + 3 a\cdot 31^{4} + \left(12 a + 14\right)\cdot 31^{5} +O\left(31^{ 6 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 4 a + 6 + \left(2 a + 18\right)\cdot 31 + \left(14 a + 2\right)\cdot 31^{2} + \left(5 a + 21\right)\cdot 31^{3} + \left(26 a + 2\right)\cdot 31^{4} + \left(a + 12\right)\cdot 31^{5} +O\left(31^{ 6 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 3 a + 28 + \left(28 a + 16\right)\cdot 31 + \left(20 a + 6\right)\cdot 31^{2} + a\cdot 31^{3} + \left(27 a + 10\right)\cdot 31^{4} + \left(18 a + 3\right)\cdot 31^{5} +O\left(31^{ 6 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 6 a + \left(12 a + 22\right)\cdot 31 + \left(16 a + 22\right)\cdot 31^{2} + \left(5 a + 22\right)\cdot 31^{3} + \left(4 a + 13\right)\cdot 31^{4} + \left(18 a + 5\right)\cdot 31^{5} +O\left(31^{ 6 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 27 a + 14 + \left(28 a + 18\right)\cdot 31 + \left(16 a + 28\right)\cdot 31^{2} + \left(25 a + 17\right)\cdot 31^{3} + \left(4 a + 18\right)\cdot 31^{4} + \left(29 a + 20\right)\cdot 31^{5} +O\left(31^{ 6 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 25 a + 12 + \left(18 a + 9\right)\cdot 31 + \left(14 a + 12\right)\cdot 31^{2} + \left(25 a + 17\right)\cdot 31^{3} + \left(26 a + 16\right)\cdot 31^{4} + \left(12 a + 6\right)\cdot 31^{5} +O\left(31^{ 6 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
| Cycle notation |
| $(1,3)(2,5)(4,6)$ |
| $(2,3,4)$ |
| $(1,5,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character values |
| | |
$c1$ |
$c2$ |
| $1$ |
$1$ |
$()$ |
$2$ |
$2$ |
| $3$ |
$2$ |
$(1,3)(2,5)(4,6)$ |
$0$ |
$0$ |
| $1$ |
$3$ |
$(1,5,6)(2,4,3)$ |
$2 \zeta_{3}$ |
$-2 \zeta_{3} - 2$ |
| $1$ |
$3$ |
$(1,6,5)(2,3,4)$ |
$-2 \zeta_{3} - 2$ |
$2 \zeta_{3}$ |
| $2$ |
$3$ |
$(2,3,4)$ |
$-\zeta_{3}$ |
$\zeta_{3} + 1$ |
| $2$ |
$3$ |
$(2,4,3)$ |
$\zeta_{3} + 1$ |
$-\zeta_{3}$ |
| $2$ |
$3$ |
$(1,5,6)(2,3,4)$ |
$-1$ |
$-1$ |
| $3$ |
$6$ |
$(1,3,5,2,6,4)$ |
$0$ |
$0$ |
| $3$ |
$6$ |
$(1,4,6,2,5,3)$ |
$0$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.