Properties

Label 2.2e2_19_67e2.6t3.1c1
Dimension 2
Group $D_{6}$
Conductor $ 2^{2} \cdot 19 \cdot 67^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:$341164= 2^{2} \cdot 19 \cdot 67^{2} $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} - 81 x^{4} + 133 x^{3} + 2894 x^{2} - 6922 x - 86274 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{6}$
Parity: Odd
Determinant: 1.19.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 9.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{2} + 29 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 29 + 7\cdot 31 + 9\cdot 31^{2} + 17\cdot 31^{3} + 13\cdot 31^{4} + 27\cdot 31^{5} + 13\cdot 31^{6} + 13\cdot 31^{7} + 15\cdot 31^{8} +O\left(31^{ 9 }\right)$
$r_{ 2 }$ $=$ $ 25 + 31 + 6\cdot 31^{2} + 14\cdot 31^{3} + 3\cdot 31^{4} + 4\cdot 31^{5} + 7\cdot 31^{6} + 11\cdot 31^{7} + 25\cdot 31^{8} +O\left(31^{ 9 }\right)$
$r_{ 3 }$ $=$ $ 16 a + 13 + 18\cdot 31 + \left(14 a + 14\right)\cdot 31^{2} + \left(16 a + 9\right)\cdot 31^{3} + \left(22 a + 13\right)\cdot 31^{4} + \left(a + 11\right)\cdot 31^{5} + \left(8 a + 4\right)\cdot 31^{6} + \left(3 a + 1\right)\cdot 31^{7} + \left(7 a + 16\right)\cdot 31^{8} +O\left(31^{ 9 }\right)$
$r_{ 4 }$ $=$ $ a + 22 + \left(26 a + 20\right)\cdot 31 + \left(3 a + 19\right)\cdot 31^{2} + \left(24 a + 20\right)\cdot 31^{3} + \left(17 a + 4\right)\cdot 31^{4} + 6 a\cdot 31^{5} + \left(7 a + 5\right)\cdot 31^{6} + \left(7 a + 30\right)\cdot 31^{7} + \left(29 a + 9\right)\cdot 31^{8} +O\left(31^{ 9 }\right)$
$r_{ 5 }$ $=$ $ 15 a + 14 + \left(30 a + 3\right)\cdot 31 + \left(16 a + 11\right)\cdot 31^{2} + \left(14 a + 28\right)\cdot 31^{3} + \left(8 a + 10\right)\cdot 31^{4} + \left(29 a + 23\right)\cdot 31^{5} + \left(22 a + 18\right)\cdot 31^{6} + \left(27 a + 30\right)\cdot 31^{7} + \left(23 a + 26\right)\cdot 31^{8} +O\left(31^{ 9 }\right)$
$r_{ 6 }$ $=$ $ 30 a + 24 + \left(4 a + 9\right)\cdot 31 + \left(27 a + 1\right)\cdot 31^{2} + \left(6 a + 3\right)\cdot 31^{3} + \left(13 a + 16\right)\cdot 31^{4} + \left(24 a + 26\right)\cdot 31^{5} + \left(23 a + 12\right)\cdot 31^{6} + \left(23 a + 6\right)\cdot 31^{7} + \left(a + 30\right)\cdot 31^{8} +O\left(31^{ 9 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(3,4)(5,6)$
$(1,3)(2,4)(5,6)$
$(3,5)(4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,2)(3,4)(5,6)$$-2$
$3$$2$$(1,3)(2,4)(5,6)$$0$
$3$$2$$(1,4)(2,3)$$0$
$2$$3$$(1,4,6)(2,3,5)$$-1$
$2$$6$$(1,5,4,2,6,3)$$1$
The blue line marks the conjugacy class containing complex conjugation.