Properties

Label 2.2e2_19_31e2.6t3.2
Dimension 2
Group $D_{6}$
Conductor $ 2^{2} \cdot 19 \cdot 31^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:$73036= 2^{2} \cdot 19 \cdot 31^{2} $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 29 x^{4} - 19 x^{3} + 192 x^{2} - 66 x + 206 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{6}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: $ x^{2} + 38 x + 6 $
Roots:
$r_{ 1 }$ $=$ $ 31 a + 36 + \left(5 a + 16\right)\cdot 41 + \left(11 a + 35\right)\cdot 41^{2} + \left(15 a + 28\right)\cdot 41^{3} + \left(40 a + 34\right)\cdot 41^{4} + \left(39 a + 17\right)\cdot 41^{5} + \left(18 a + 35\right)\cdot 41^{6} +O\left(41^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 12 + 11\cdot 41 + 35\cdot 41^{2} + 4\cdot 41^{3} + 37\cdot 41^{4} + 24\cdot 41^{5} + 23\cdot 41^{6} +O\left(41^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 10 a + 6 + \left(35 a + 3\right)\cdot 41 + \left(29 a + 22\right)\cdot 41^{2} + \left(25 a + 22\right)\cdot 41^{3} + 17\cdot 41^{4} + \left(a + 15\right)\cdot 41^{5} + \left(22 a + 11\right)\cdot 41^{6} +O\left(41^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 37 + 32\cdot 41 + 15\cdot 41^{2} + 35\cdot 41^{3} + 10\cdot 41^{4} + 18\cdot 41^{5} +O\left(41^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 10 a + 22 + \left(35 a + 22\right)\cdot 41 + 29 a\cdot 41^{2} + \left(25 a + 33\right)\cdot 41^{3} + 2\cdot 41^{4} + \left(a + 22\right)\cdot 41^{5} + \left(22 a + 34\right)\cdot 41^{6} +O\left(41^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 31 a + 11 + \left(5 a + 36\right)\cdot 41 + \left(11 a + 13\right)\cdot 41^{2} + \left(15 a + 39\right)\cdot 41^{3} + \left(40 a + 19\right)\cdot 41^{4} + \left(39 a + 24\right)\cdot 41^{5} + \left(18 a + 17\right)\cdot 41^{6} +O\left(41^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,5)(3,4)$
$(1,2)(3,5)(4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,6)(2,4)(3,5)$ $-2$
$3$ $2$ $(1,2)(3,5)(4,6)$ $0$
$3$ $2$ $(1,3)(5,6)$ $0$
$2$ $3$ $(1,4,3)(2,5,6)$ $-1$
$2$ $6$ $(1,5,4,6,3,2)$ $1$
The blue line marks the conjugacy class containing complex conjugation.