Properties

Label 2.2e2_19_23e2.6t3.1c1
Dimension 2
Group $D_{6}$
Conductor $ 2^{2} \cdot 19 \cdot 23^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:$40204= 2^{2} \cdot 19 \cdot 23^{2} $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} - 26 x^{4} + 45 x^{3} + 298 x^{2} - 795 x - 3257 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{6}$
Parity: Odd
Determinant: 1.19.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 37 }$ to precision 8.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 37 }$: $ x^{2} + 33 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 1 + 8\cdot 37 + 32\cdot 37^{2} + 37^{3} + 25\cdot 37^{4} + 7\cdot 37^{5} + 14\cdot 37^{6} + 30\cdot 37^{7} +O\left(37^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 15 a + 16 + \left(23 a + 27\right)\cdot 37 + \left(15 a + 21\right)\cdot 37^{2} + \left(a + 22\right)\cdot 37^{3} + \left(5 a + 13\right)\cdot 37^{4} + \left(3 a + 11\right)\cdot 37^{5} + \left(31 a + 26\right)\cdot 37^{6} + \left(25 a + 32\right)\cdot 37^{7} +O\left(37^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 22 a + 2 + \left(13 a + 32\right)\cdot 37 + \left(21 a + 23\right)\cdot 37^{2} + \left(35 a + 12\right)\cdot 37^{3} + \left(31 a + 32\right)\cdot 37^{4} + \left(33 a + 18\right)\cdot 37^{5} + \left(5 a + 36\right)\cdot 37^{6} + \left(11 a + 30\right)\cdot 37^{7} +O\left(37^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 35 a + 27 + \left(10 a + 3\right)\cdot 37 + \left(a + 10\right)\cdot 37^{2} + \left(10 a + 13\right)\cdot 37^{3} + \left(12 a + 15\right)\cdot 37^{4} + \left(4 a + 11\right)\cdot 37^{5} + \left(28 a + 1\right)\cdot 37^{6} + \left(13 a + 23\right)\cdot 37^{7} +O\left(37^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 12 + 27\cdot 37 + 18\cdot 37^{2} + 8\cdot 37^{3} + 7\cdot 37^{4} + 8\cdot 37^{5} + 34\cdot 37^{6} + 17\cdot 37^{7} +O\left(37^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 2 a + 19 + \left(26 a + 12\right)\cdot 37 + \left(35 a + 4\right)\cdot 37^{2} + \left(26 a + 15\right)\cdot 37^{3} + \left(24 a + 17\right)\cdot 37^{4} + \left(32 a + 16\right)\cdot 37^{5} + \left(8 a + 35\right)\cdot 37^{6} + \left(23 a + 12\right)\cdot 37^{7} +O\left(37^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,3)(4,6)$
$(1,2,6,5,4,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,5)(2,4)(3,6)$$-2$
$3$$2$$(2,3)(4,6)$$0$
$3$$2$$(1,2)(3,6)(4,5)$$0$
$2$$3$$(1,6,4)(2,5,3)$$-1$
$2$$6$$(1,2,6,5,4,3)$$1$
The blue line marks the conjugacy class containing complex conjugation.