Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 37 }$ to precision 8.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 37 }$: $ x^{2} + 33 x + 2 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 1 + 8\cdot 37 + 32\cdot 37^{2} + 37^{3} + 25\cdot 37^{4} + 7\cdot 37^{5} + 14\cdot 37^{6} + 30\cdot 37^{7} +O\left(37^{ 8 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 15 a + 16 + \left(23 a + 27\right)\cdot 37 + \left(15 a + 21\right)\cdot 37^{2} + \left(a + 22\right)\cdot 37^{3} + \left(5 a + 13\right)\cdot 37^{4} + \left(3 a + 11\right)\cdot 37^{5} + \left(31 a + 26\right)\cdot 37^{6} + \left(25 a + 32\right)\cdot 37^{7} +O\left(37^{ 8 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 22 a + 2 + \left(13 a + 32\right)\cdot 37 + \left(21 a + 23\right)\cdot 37^{2} + \left(35 a + 12\right)\cdot 37^{3} + \left(31 a + 32\right)\cdot 37^{4} + \left(33 a + 18\right)\cdot 37^{5} + \left(5 a + 36\right)\cdot 37^{6} + \left(11 a + 30\right)\cdot 37^{7} +O\left(37^{ 8 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 35 a + 27 + \left(10 a + 3\right)\cdot 37 + \left(a + 10\right)\cdot 37^{2} + \left(10 a + 13\right)\cdot 37^{3} + \left(12 a + 15\right)\cdot 37^{4} + \left(4 a + 11\right)\cdot 37^{5} + \left(28 a + 1\right)\cdot 37^{6} + \left(13 a + 23\right)\cdot 37^{7} +O\left(37^{ 8 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 12 + 27\cdot 37 + 18\cdot 37^{2} + 8\cdot 37^{3} + 7\cdot 37^{4} + 8\cdot 37^{5} + 34\cdot 37^{6} + 17\cdot 37^{7} +O\left(37^{ 8 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 2 a + 19 + \left(26 a + 12\right)\cdot 37 + \left(35 a + 4\right)\cdot 37^{2} + \left(26 a + 15\right)\cdot 37^{3} + \left(24 a + 17\right)\cdot 37^{4} + \left(32 a + 16\right)\cdot 37^{5} + \left(8 a + 35\right)\cdot 37^{6} + \left(23 a + 12\right)\cdot 37^{7} +O\left(37^{ 8 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
| Cycle notation |
| $(2,3)(4,6)$ |
| $(1,2,6,5,4,3)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$2$ |
| $1$ |
$2$ |
$(1,5)(2,4)(3,6)$ |
$-2$ |
| $3$ |
$2$ |
$(2,3)(4,6)$ |
$0$ |
| $3$ |
$2$ |
$(1,2)(3,6)(4,5)$ |
$0$ |
| $2$ |
$3$ |
$(1,6,4)(2,5,3)$ |
$-1$ |
| $2$ |
$6$ |
$(1,2,6,5,4,3)$ |
$1$ |
The blue line marks the conjugacy class containing complex conjugation.