Properties

Label 2.2e2_193.4t3.3
Dimension 2
Group $D_4$
Conductor $ 2^{2} \cdot 193 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$772= 2^{2} \cdot 193 $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} + 8 x^{6} + 14 x^{5} + 117 x^{4} - 270 x^{3} + 242 x^{2} - 396 x + 324 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 197 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 19 + 152\cdot 197 + 50\cdot 197^{2} + 185\cdot 197^{3} + 177\cdot 197^{4} +O\left(197^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 56 + 88\cdot 197 + 195\cdot 197^{2} + 33\cdot 197^{3} + 153\cdot 197^{4} +O\left(197^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 62 + 163\cdot 197 + 131\cdot 197^{2} + 96\cdot 197^{3} + 86\cdot 197^{4} +O\left(197^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 80 + 159\cdot 197 + 63\cdot 197^{2} + 154\cdot 197^{3} + 114\cdot 197^{4} +O\left(197^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 122 + 26\cdot 197 + 109\cdot 197^{2} + 120\cdot 197^{3} + 183\cdot 197^{4} +O\left(197^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 128 + 101\cdot 197 + 45\cdot 197^{2} + 183\cdot 197^{3} + 116\cdot 197^{4} +O\left(197^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 132 + 44\cdot 197 + 89\cdot 197^{2} + 22\cdot 197^{3} + 9\cdot 197^{4} +O\left(197^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 193 + 51\cdot 197 + 102\cdot 197^{2} + 188\cdot 197^{3} + 142\cdot 197^{4} +O\left(197^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,4)(5,7)(6,8)$
$(1,3,8,5)(2,7,6,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,8)(2,6)(3,5)(4,7)$ $-2$
$2$ $2$ $(1,2)(3,4)(5,7)(6,8)$ $0$
$2$ $2$ $(1,7)(2,3)(4,8)(5,6)$ $0$
$2$ $4$ $(1,3,8,5)(2,7,6,4)$ $0$
The blue line marks the conjugacy class containing complex conjugation.