Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 197 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 65 + 57\cdot 197 + 25\cdot 197^{2} + 181\cdot 197^{3} + 64\cdot 197^{4} +O\left(197^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 71 + 132\cdot 197 + 158\cdot 197^{2} + 46\cdot 197^{3} + 195\cdot 197^{4} +O\left(197^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 126 + 64\cdot 197 + 38\cdot 197^{2} + 150\cdot 197^{3} + 197^{4} +O\left(197^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 132 + 139\cdot 197 + 171\cdot 197^{2} + 15\cdot 197^{3} + 132\cdot 197^{4} +O\left(197^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 4 }$
| Cycle notation |
| $(1,2)(3,4)$ |
| $(2,3)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 4 }$
| Character value |
| $1$ | $1$ | $()$ | $2$ |
| $1$ | $2$ | $(1,4)(2,3)$ | $-2$ |
| $2$ | $2$ | $(1,2)(3,4)$ | $0$ |
| $2$ | $2$ | $(1,4)$ | $0$ |
| $2$ | $4$ | $(1,3,4,2)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.